These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 32795006)

  • 1. Signatures of brain criticality unveiled by maximum entropy analysis across cortical states.
    Lotfi N; Fontenele AJ; Feliciano T; Aguiar LAA; de Vasconcelos NAP; Soares-Cunha C; Coimbra B; Rodrigues AJ; Sousa N; Copelli M; Carelli PV
    Phys Rev E; 2020 Jul; 102(1-1):012408. PubMed ID: 32795006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical complexity is maximized close to criticality in cortical dynamics.
    Lotfi N; Feliciano T; Aguiar LAA; Silva TPL; Carvalho TTA; Rosso OA; Copelli M; Matias FS; Carelli PV
    Phys Rev E; 2021 Jan; 103(1-1):012415. PubMed ID: 33601583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous cortical activity is transiently poised close to criticality.
    Hahn G; Ponce-Alvarez A; Monier C; Benvenuti G; Kumar A; Chavane F; Deco G; Frégnac Y
    PLoS Comput Biol; 2017 May; 13(5):e1005543. PubMed ID: 28542191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spike avalanches exhibit universal dynamics across the sleep-wake cycle.
    Ribeiro TL; Copelli M; Caixeta F; Belchior H; Chialvo DR; Nicolelis MA; Ribeiro S
    PLoS One; 2010 Nov; 5(11):e14129. PubMed ID: 21152422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-Critical Dynamics in Stimulus-Evoked Activity of the Human Brain and Its Relation to Spontaneous Resting-State Activity.
    Arviv O; Goldstein A; Shriki O
    J Neurosci; 2015 Oct; 35(41):13927-42. PubMed ID: 26468194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Criticality between Cortical States.
    Fontenele AJ; de Vasconcelos NAP; Feliciano T; Aguiar LAA; Soares-Cunha C; Coimbra B; Dalla Porta L; Ribeiro S; Rodrigues AJ; Sousa N; Carelli PV; Copelli M
    Phys Rev Lett; 2019 May; 122(20):208101. PubMed ID: 31172737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-organization and neuronal avalanches in networks of dissociated cortical neurons.
    Pasquale V; Massobrio P; Bologna LL; Chiappalone M; Martinoia S
    Neuroscience; 2008 Jun; 153(4):1354-69. PubMed ID: 18448256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Avalanches in self-organized critical neural networks: a minimal model for the neural SOC universality class.
    Rybarsch M; Bornholdt S
    PLoS One; 2014; 9(4):e93090. PubMed ID: 24743324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics and signatures of criticality in a network of neurons.
    Tkačik G; Mora T; Marre O; Amodei D; Palmer SE; Berry MJ; Bialek W
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11508-13. PubMed ID: 26330611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-regulated critical brain dynamics originate from high frequency-band activity in the MEG.
    Dürschmid S; Reichert C; Walter N; Hinrichs H; Heinze HJ; Ohl FW; Tononi G; Deliano M
    PLoS One; 2020; 15(6):e0233589. PubMed ID: 32525940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state.
    Bellay T; Klaus A; Seshadri S; Plenz D
    Elife; 2015 Jul; 4():e07224. PubMed ID: 26151674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximizing Sensory Dynamic Range by Tuning the Cortical State to Criticality.
    Gautam SH; Hoang TT; McClanahan K; Grady SK; Shew WL
    PLoS Comput Biol; 2015 Dec; 11(12):e1004576. PubMed ID: 26623645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subsampled Directed-Percolation Models Explain Scaling Relations Experimentally Observed in the Brain.
    Carvalho TTA; Fontenele AJ; Girardi-Schappo M; Feliciano T; Aguiar LAA; Silva TPL; de Vasconcelos NAP; Carelli PV; Copelli M
    Front Neural Circuits; 2020; 14():576727. PubMed ID: 33519388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. State-Dependent Cortical Unit Activity Reflects Dynamic Brain State Transitions in Anesthesia.
    Lee H; Wang S; Hudetz AG
    J Neurosci; 2020 Dec; 40(49):9440-9454. PubMed ID: 33122389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Criticality Maximizes Complexity in Neural Tissue.
    Timme NM; Marshall NJ; Bennett N; Ripp M; Lautzenhiser E; Beggs JM
    Front Physiol; 2016; 7():425. PubMed ID: 27729870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Searching for collective behavior in a small brain.
    Chen X; Randi F; Leifer AM; Bialek W
    Phys Rev E; 2019 May; 99(5-1):052418. PubMed ID: 31212571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Landau-Ginzburg theory of cortex dynamics: Scale-free avalanches emerge at the edge of synchronization.
    di Santo S; Villegas P; Burioni R; Muñoz MA
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1356-E1365. PubMed ID: 29378970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signatures of criticality arise from random subsampling in simple population models.
    Nonnenmacher M; Behrens C; Berens P; Bethge M; Macke JH
    PLoS Comput Biol; 2017 Oct; 13(10):e1005718. PubMed ID: 28972970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hopf Bifurcation in Mean Field Explains Critical Avalanches in Excitation-Inhibition Balanced Neuronal Networks: A Mechanism for Multiscale Variability.
    Liang J; Zhou T; Zhou C
    Front Syst Neurosci; 2020; 14():580011. PubMed ID: 33324179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneity of synaptic input connectivity regulates spike-based neuronal avalanches.
    Wu S; Zhang Y; Cui Y; Li H; Wang J; Guo L; Xia Y; Yao D; Xu P; Guo D
    Neural Netw; 2019 Feb; 110():91-103. PubMed ID: 30508808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.