These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 32795066)
1. Percolation of Fortuin-Kasteleyn clusters for the random-bond Ising model. Fajen H; Hartmann AK; Young AP Phys Rev E; 2020 Jul; 102(1-1):012131. PubMed ID: 32795066 [TBL] [Abstract][Full Text] [Related]
2. Percolation effects in the Fortuin-Kasteleyn Ising model on the complete graph. Fang S; Zhou Z; Deng Y Phys Rev E; 2021 Jan; 103(1-1):012102. PubMed ID: 33601530 [TBL] [Abstract][Full Text] [Related]
3. Critical Binder cumulant and universality: Fortuin-Kasteleyn clusters and order-parameter fluctuations. Malakis A; Fytas NG; Gülpinar G Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042103. PubMed ID: 24827189 [TBL] [Abstract][Full Text] [Related]
4. Cluster percolation in the two-dimensional Ising spin glass. Münster L; Weigel M Phys Rev E; 2023 May; 107(5-1):054103. PubMed ID: 37329020 [TBL] [Abstract][Full Text] [Related]
6. Red-bond exponents of the critical and the tricritical Ising model in three dimensions. Deng Y; Blöte HW Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056132. PubMed ID: 15600717 [TBL] [Abstract][Full Text] [Related]
7. Fortuin-Kasteleyn and damage-spreading transitions in random-bond Ising lattices. Lundow PH; Campbell IA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041121. PubMed ID: 23214543 [TBL] [Abstract][Full Text] [Related]
8. Sweeny and Gliozzi dynamics for simulations of Potts models in the Fortuin-Kasteleyn representation. Wang JS; Kozan O; Swendsen RH Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):057101. PubMed ID: 12513636 [TBL] [Abstract][Full Text] [Related]
9. Percolation and critical O(n) loop configurations. Ding C; Deng Y; Guo W; Blöte HW Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061118. PubMed ID: 19658484 [TBL] [Abstract][Full Text] [Related]
10. Geometric properties of the Fortuin-Kasteleyn representation of the Ising model. Hou P; Fang S; Wang J; Hu H; Deng Y Phys Rev E; 2019 Apr; 99(4-1):042150. PubMed ID: 31108621 [TBL] [Abstract][Full Text] [Related]
11. Finite-size scaling of the high-dimensional Ising model in the loop representation. Xiao T; Li Z; Zhou Z; Fang S; Deng Y Phys Rev E; 2024 Mar; 109(3-1):034125. PubMed ID: 38632761 [TBL] [Abstract][Full Text] [Related]
12. Universality of the crossing probability for the Potts model for q=1, 2, 3, 4. Vasilyev OA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026125. PubMed ID: 14525067 [TBL] [Abstract][Full Text] [Related]
13. Susceptibility and percolation in two-dimensional random field Ising magnets. Seppälä ET; Alava MJ Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066109. PubMed ID: 11415175 [TBL] [Abstract][Full Text] [Related]
14. Possible new phase transition in the 3D Ising model associated with boundary percolation. Grady M J Phys Condens Matter; 2023 Apr; 35(28):. PubMed ID: 37040773 [TBL] [Abstract][Full Text] [Related]
15. Dynamical percolation transition in the Ising model studied using a pulsed magnetic field. Biswas S; Kundu A; Chandra AK Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 1):021109. PubMed ID: 21405820 [TBL] [Abstract][Full Text] [Related]
16. Geometric scaling behaviors of the Fortuin-Kasteleyn Ising model in high dimensions. Fang S; Zhou Z; Deng Y Phys Rev E; 2023 Apr; 107(4-1):044103. PubMed ID: 37198783 [TBL] [Abstract][Full Text] [Related]
17. Complete graph and Gaussian fixed-point asymptotics in the five-dimensional Fortuin-Kasteleyn Ising model with periodic boundaries. Fang S; Grimm J; Zhou Z; Deng Y Phys Rev E; 2020 Aug; 102(2-1):022125. PubMed ID: 32942373 [TBL] [Abstract][Full Text] [Related]
18. Exact ground states of large two-dimensional planar Ising spin glasses. Pardella G; Liers F Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056705. PubMed ID: 19113235 [TBL] [Abstract][Full Text] [Related]
19. Biased percolation on scale-free networks. Hooyberghs H; Van Schaeybroeck B; Moreira AA; Andrade JS; Herrmann HJ; Indekeu JO Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011102. PubMed ID: 20365318 [TBL] [Abstract][Full Text] [Related]
20. Standard and inverse bond percolation of straight rigid rods on square lattices. Ramirez LS; Centres PM; Ramirez-Pastor AJ Phys Rev E; 2018 Apr; 97(4-1):042113. PubMed ID: 29758718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]