These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 32795464)
1. Inhibition of sigma-1 receptors substantially modulates GABA and glutamate transport in presynaptic nerve terminals. Pozdnyakova N; Krisanova N; Dudarenko M; Vavers E; Zvejniece L; Dambrova M; Borisova T Exp Neurol; 2020 Nov; 333():113434. PubMed ID: 32795464 [TBL] [Abstract][Full Text] [Related]
2. Presynaptic GABA(B) receptor modulation of glutamate exocytosis from rat cerebrocortical nerve terminals: receptor decoupling by protein kinase C. Perkinton MS; Sihra TS J Neurochem; 1998 Apr; 70(4):1513-22. PubMed ID: 9523568 [TBL] [Abstract][Full Text] [Related]
3. Neuromodulatory properties of fluorescent carbon dots: effect on exocytotic release, uptake and ambient level of glutamate and GABA in brain nerve terminals. Borisova T; Nazarova A; Dekaliuk M; Krisanova N; Pozdnyakova N; Borysov A; Sivko R; Demchenko AP Int J Biochem Cell Biol; 2015 Feb; 59():203-15. PubMed ID: 25486182 [TBL] [Abstract][Full Text] [Related]
4. Neurosteroid allopregnanolone inhibits glutamate release from rat cerebrocortical nerve terminals. Chang Y; Hsieh HL; Huang SK; Wang SJ Synapse; 2019 Mar; 73(3):e22076. PubMed ID: 30362283 [TBL] [Abstract][Full Text] [Related]
5. Vitamin D3 deficiency in puberty rats causes presynaptic malfunctioning through alterations in exocytotic release and uptake of glutamate/GABA and expression of EAAC-1/GAT-3 transporters. Krisanova N; Pozdnyakova N; Pastukhov A; Dudarenko M; Maksymchuk O; Parkhomets P; Sivko R; Borisova T Food Chem Toxicol; 2019 Jan; 123():142-150. PubMed ID: 30367913 [TBL] [Abstract][Full Text] [Related]
6. New effects of GABAB receptor allosteric modulator rac-BHFF on ambient GABA, uptake/release, Em and synaptic vesicle acidification in nerve terminals. Pozdnyakova N; Dudarenko M; Borisova T Neuroscience; 2015 Sep; 304():60-70. PubMed ID: 26197223 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms underlying the riluzole inhibition of glutamate release from rat cerebral cortex nerve terminals (synaptosomes). Wang SJ; Wang KY; Wang WC Neuroscience; 2004; 125(1):191-201. PubMed ID: 15051158 [TBL] [Abstract][Full Text] [Related]
8. Presynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor-mediated stimulation of glutamate and GABA release in the rat striatum in vivo: a dual-label microdialysis study. Patel DR; Young AM; Croucher MJ Neuroscience; 2001; 102(1):101-11. PubMed ID: 11226673 [TBL] [Abstract][Full Text] [Related]
9. Potential antidepressant LY 367265 presynaptically inhibits the release of glutamate in rat cerebral cortex. Wang SJ Synapse; 2005 Mar; 55(3):156-63. PubMed ID: 15602751 [TBL] [Abstract][Full Text] [Related]
10. Unexpected inhibitory regulation of glutamate release from rat cerebrocortical nerve terminals by presynaptic 5-hydroxytryptamine-2A receptors. Wang SJ; Wang KY; Wang WC; Sihra TS J Neurosci Res; 2006 Nov; 84(7):1528-42. PubMed ID: 17016851 [TBL] [Abstract][Full Text] [Related]
11. GABA induces norepinephrine exocytosis from hippocampal noradrenergic axon terminals by a dual mechanism involving different voltage-sensitive calcium channels. Fassio A; Rossi F; Bonanno G; Raiteri M J Neurosci Res; 1999 Aug; 57(3):324-31. PubMed ID: 10412023 [TBL] [Abstract][Full Text] [Related]
12. Presynaptic mGlu7 receptors control GABA release in mouse hippocampus. Summa M; Di Prisco S; Grilli M; Usai C; Marchi M; Pittaluga A Neuropharmacology; 2013 Mar; 66():215-24. PubMed ID: 22564442 [TBL] [Abstract][Full Text] [Related]
13. Regulation of intracellular [Ca2+] and GABA release by presynaptic GABAB receptors in rat cerebrocortical synaptosomes. Santos AE; Carvalho CM; Macedo TA; Carvalho AP Neurochem Int; 1995; 27(4-5):397-406. PubMed ID: 8845740 [TBL] [Abstract][Full Text] [Related]
14. Facilitatory effect of glutamate exocytosis from rat cerebrocortical nerve terminals by alpha-tocopherol, a major vitamin E component. Yang TT; Wang SJ Neurochem Int; 2008 May; 52(6):979-89. PubMed ID: 18037536 [TBL] [Abstract][Full Text] [Related]
15. Dimebon, an antihistamine drug, inhibits glutamate release in rat cerebrocortical nerve terminals. Wang CC; Kuo JR; Wang SJ Eur J Pharmacol; 2014 Jul; 734():67-76. PubMed ID: 24726847 [TBL] [Abstract][Full Text] [Related]
16. Pre-synaptic histamine H3 receptors regulate glutamate, but not GABA release in rat thalamus. Garduño-Torres B; Treviño M; Gutiérrez R; Arias-Montaño JA Neuropharmacology; 2007 Feb; 52(2):527-35. PubMed ID: 17027043 [TBL] [Abstract][Full Text] [Related]
17. Phenylarsine oxide is able to dissipate synaptic vesicle acidic pool. Tarasenko AS; Kostrzhevska OG; Storchak LG; Linetska MV; Borisova TA; Himmelreich NH Neurochem Int; 2005 Jun; 46(7):541-50. PubMed ID: 15843048 [TBL] [Abstract][Full Text] [Related]
18. Activation of gamma-aminobutyric acid GAT-1 transporters on glutamatergic terminals of mouse spinal cord mediates glutamate release through anion channels and by transporter reversal. Raiteri L; Stigliani S; Patti L; Usai C; Bucci G; Diaspro A; Raiteri M; Bonanno G J Neurosci Res; 2005 May; 80(3):424-33. PubMed ID: 15789377 [TBL] [Abstract][Full Text] [Related]
19. Presynaptic GABAB autoreceptor regulation of nicotinic acetylcholine receptor mediated [(3)H]-GABA release from mouse synaptosomes. McClure-Begley TD; Grady SR; Marks MJ; Collins AC; Stitzel JA Biochem Pharmacol; 2014 Sep; 91(1):87-96. PubMed ID: 24953818 [TBL] [Abstract][Full Text] [Related]
20. Under stressful conditions activation of the ionotropic P2X7 receptor differentially regulates GABA and glutamate release from nerve terminals of the rat cerebral cortex. Barros-Barbosa AR; Oliveira Â; Lobo MG; Cordeiro JM; Correia-de-Sá P Neurochem Int; 2018 Jan; 112():81-95. PubMed ID: 29154812 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]