BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 32795534)

  • 1. Disruption of Hydrogen-Bond Network in Rhodopsin Mutations Cause Night Blindness.
    Katayama K; Takeyama Y; Enomoto A; Imai H; Kandori H
    J Mol Biol; 2020 Sep; 432(19):5378-5389. PubMed ID: 32795534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of rhodopsin congenital night blindness mutant T94I.
    Gross AK; Rao VR; Oprian DD
    Biochemistry; 2003 Feb; 42(7):2009-15. PubMed ID: 12590588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the mutant visual pigment responsible for congenital night blindness: a biochemical and Fourier-transform infrared spectroscopy study.
    Zvyaga TA; Fahmy K; Siebert F; Sakmar TP
    Biochemistry; 1996 Jun; 35(23):7536-45. PubMed ID: 8652533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow binding of retinal to rhodopsin mutants G90D and T94D.
    Gross AK; Xie G; Oprian DD
    Biochemistry; 2003 Feb; 42(7):2002-8. PubMed ID: 12590587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unusual thermal and conformational properties of the rhodopsin congenital night blindness mutant Thr-94 --> Ile.
    Ramon E; del Valle LJ; Garriga P
    J Biol Chem; 2003 Feb; 278(8):6427-32. PubMed ID: 12466267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanisms of disease for mutations at Gly-90 in rhodopsin.
    Toledo D; Ramon E; Aguilà M; Cordomí A; Pérez JJ; Mendes HF; Cheetham ME; Garriga P
    J Biol Chem; 2011 Nov; 286(46):39993-40001. PubMed ID: 21940625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Night blindness and the mechanism of constitutive signaling of mutant G90D rhodopsin.
    Dizhoor AM; Woodruff ML; Olshevskaya EV; Cilluffo MC; Cornwall MC; Sieving PA; Fain GL
    J Neurosci; 2008 Nov; 28(45):11662-72. PubMed ID: 18987202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic evidence for altered chromophore--protein interactions in low-temperature photoproducts of the visual pigment responsible for congenital night blindness.
    Fahmy K; Zvyaga TA; Sakmar TP; Siebert F
    Biochemistry; 1996 Nov; 35(47):15065-73. PubMed ID: 8942673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness.
    Rao VR; Cohen GB; Oprian DD
    Nature; 1994 Feb; 367(6464):639-42. PubMed ID: 8107847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural role of the T94I rhodopsin mutation in congenital stationary night blindness.
    Singhal A; Guo Y; Matkovic M; Schertler G; Deupi X; Yan EC; Standfuss J
    EMBO Rep; 2016 Oct; 17(10):1431-1440. PubMed ID: 27458239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How Rhodopsin Tunes the Equilibrium between Protonated and Deprotonated Forms of the Retinal Chromophore.
    van Keulen SC; Solano A; Rothlisberger U
    J Chem Theory Comput; 2017 Sep; 13(9):4524-4534. PubMed ID: 28731695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by GRKs but differ in arrestin-1 binding.
    Vishnivetskiy SA; Ostermaier MK; Singhal A; Panneels V; Homan KT; Glukhova A; Sligar SG; Tesmer JJ; Schertler GF; Standfuss J; Gurevich VV
    Cell Signal; 2013 Nov; 25(11):2155-62. PubMed ID: 23872075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dark continuous noise from mutant G90D-rhodopsin predominantly underlies congenital stationary night blindness.
    Chai Z; Ye Y; Silverman D; Rose K; Madura A; Reed RR; Chen J; Yau KW
    Proc Natl Acad Sci U S A; 2024 May; 121(21):e2404763121. PubMed ID: 38743626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural, energetic, and mechanical perturbations in rhodopsin mutant that causes congenital stationary night blindness.
    Kawamura S; Colozo AT; Ge L; Müller DJ; Park PS
    J Biol Chem; 2012 Jun; 287(26):21826-35. PubMed ID: 22549882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the retinal hydrogen bond network in rhodopsin Schiff base stability and hydrolysis.
    Janz JM; Farrens DL
    J Biol Chem; 2004 Dec; 279(53):55886-94. PubMed ID: 15475355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal stability of rhodopsin and progression of retinitis pigmentosa: comparison of S186W and D190N rhodopsin mutants.
    Liu MY; Liu J; Mehrotra D; Liu Y; Guo Y; Baldera-Aguayo PA; Mooney VL; Nour AM; Yan EC
    J Biol Chem; 2013 Jun; 288(24):17698-712. PubMed ID: 23625926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of Glu181 in the photoactivation of rhodopsin.
    Lüdeke S; Beck M; Yan EC; Sakmar TP; Siebert F; Vogel R
    J Mol Biol; 2005 Oct; 353(2):345-56. PubMed ID: 16169009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition of rhodopsin into the active metarhodopsin II state opens a new light-induced pathway linked to Schiff base isomerization.
    Ritter E; Zimmermann K; Heck M; Hofmann KP; Bartl FJ
    J Biol Chem; 2004 Nov; 279(46):48102-11. PubMed ID: 15322129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 6-s-cis Conformation and polar binding pocket of the retinal chromophore in the photoactivated state of rhodopsin.
    Ahuja S; Eilers M; Hirshfeld A; Yan EC; Ziliox M; Sakmar TP; Sheves M; Smith SO
    J Am Chem Soc; 2009 Oct; 131(42):15160-9. PubMed ID: 19795853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular interactions and mutational impact upon rhodopsin (G90→D90) for hindering dark adaptation of eye: A comparative structural level outlook for signaling mechanism in night blindness.
    Banerjee A; Ray S
    Mutat Res; 2019 Mar; 814():7-14. PubMed ID: 30659944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.