BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32795791)

  • 1. A low-cost graphitized sand filter to deliver MC-LR-free potable water: Water treatment plants and household perspective.
    Kumar P; Cledon M; Brar SK
    Sci Total Environ; 2020 Dec; 747():141135. PubMed ID: 32795791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical and biological removal of Microcystin-LR and other water contaminants in a biofilter using Manganese Dioxide coated sand and Graphene sand composites.
    Kumar P; Rehab H; Hegde K; Brar SK; Cledon M; Kermanshahi-Pour A; Vo Duy S; Sauvé S; Surampalli RY
    Sci Total Environ; 2020 Feb; 703():135052. PubMed ID: 31733495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agro-industrial residues as a unique support in a sand filter to enhance the bioactivity to remove microcystin-Leucine aRginine and organics.
    Kumar P; Rubio HDP; Hegde K; Brar SK; Cledon M; Kermanshahi-Pour A; Sauvé S; Roy-Lachapelle A; Galvez-Cloutier R
    Sci Total Environ; 2019 Jun; 670():971-981. PubMed ID: 31018439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The transformation of microcystin-LR during tap water treatment process and analysis of its degradation products].
    Ding XL; Zhu PF; Huang CH; Zhang Q; Zhu JY; Liu WW; Zhou WJ
    Zhonghua Yu Fang Yi Xue Za Zhi; 2018 Sep; 52(9):898-903. PubMed ID: 30196635
    [No Abstract]   [Full Text] [Related]  

  • 5. Adsorption of microcystin-LR on mesoporous carbons and its potential use in drinking water source.
    Park JA; Jung SM; Yi IG; Choi JW; Kim SB; Lee SH
    Chemosphere; 2017 Jun; 177():15-23. PubMed ID: 28279901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of microcystin-LR on purification efficiency of simulating drinking water source by Hydrocharis dubia (Bl.) backer.
    Liu J; Dong Y; Lin H
    Toxicon; 2024 Apr; 241():107654. PubMed ID: 38368956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesoporous carbon for efficient removal of microcystin-LR in drinking water sources, Nak-Dong River, South Korea: Application to a field-scale drinking water treatment plant.
    Park JA; Jung SM; Choi JW; Kim JH; Hong S; Lee SH
    Chemosphere; 2018 Feb; 193():883-891. PubMed ID: 29874763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-Occurrence of Microcystins and Taste-and-Odor Compounds in Drinking Water Source and Their Removal in a Full-Scale Drinking Water Treatment Plant.
    Shang L; Feng M; Xu X; Liu F; Ke F; Li W
    Toxins (Basel); 2018 Jan; 10(1):. PubMed ID: 29301296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of cyanotoxins from surface water resources using reusable molecularly imprinted polymer adsorbents.
    Krupadam RJ; Patel GP; Balasubramanian R
    Environ Sci Pollut Res Int; 2012 Jun; 19(5):1841-51. PubMed ID: 22207238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic removal from drinking water by a household sand filter in Vietnam--effect of filter usage practices on arsenic removal efficiency and microbiological water quality.
    Nitzsche KS; Lan VM; Trang PT; Viet PH; Berg M; Voegelin A; Planer-Friedrich B; Zahoransky J; Müller SK; Byrne JM; Schröder C; Behrens S; Kappler A
    Sci Total Environ; 2015 Jan; 502():526-36. PubMed ID: 25300017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of microcystin-LR from spiked water using either activated carbon or anthracite as filter material.
    Drogui P; Daghrir R; Simard MC; Sauvageau C; Blais JF
    Environ Technol; 2012; 33(4-6):381-91. PubMed ID: 22629609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence of cyanobacteria and microcystin toxins in raw and treated waters of the Nile River, Egypt: implication for water treatment and human health.
    Mohamed ZA; Deyab MA; Abou-Dobara MI; El-Sayed AK; El-Raghi WM
    Environ Sci Pollut Res Int; 2015 Aug; 22(15):11716-27. PubMed ID: 25854210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation of microcystin-LR using acclimatized bacteria isolated from different units of the drinking water treatment plant.
    Kumar P; Hegde K; Brar SK; Cledon M; Kermanshahi-Pour A; Roy-Lachapelle A; Galvez-Cloutier R
    Environ Pollut; 2018 Nov; 242(Pt A):407-416. PubMed ID: 30005254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of Microcystin-LR Removal in a Real Lake Water by UV/H
    Sorlini S; Collivignarelli C; Carnevale Miino M; Caccamo FM; Collivignarelli MC
    Toxins (Basel); 2020 Dec; 12(12):. PubMed ID: 33371280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated online optical biosensing system for continuous real-time determination of microcystin-LR with high sensitivity and specificity: early warning for cyanotoxin risk in drinking water sources.
    Shi HC; Song BD; Long F; Zhou XH; He M; Lv Q; Yang HY
    Environ Sci Technol; 2013 May; 47(9):4434-41. PubMed ID: 23514076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of microcystin -LR in water samples using improved HPLC method.
    Shamsollahi HR; Alimohammadi M; Nabizadeh R; Nazmara S; Mahvi AH
    Glob J Health Sci; 2014 Sep; 7(2):66-70. PubMed ID: 25716387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elimination of microcystin-LR and residual Mn species using permanganate and powdered activated carbon: Oxidation products and pathways.
    Jeong B; Oh MS; Park HM; Park C; Kim EJ; Hong SW
    Water Res; 2017 May; 114():189-199. PubMed ID: 28249210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exposure to microcystin-LR in tropical reservoirs for water supply poses high risks for children and adults.
    Malta JF; Nardocci AC; Razzolini MTP; Diniz V; Cunha DGF
    Environ Monit Assess; 2022 Mar; 194(4):253. PubMed ID: 35254523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cost-effective screen-printed carbon electrode biosensors for rapid detection of microcystin-LR in surface waters for early warning of harmful algal blooms.
    Stoll S; Hwang JH; Fox DW; Kim K; Zhai L; Lee WH
    Environ Sci Pollut Res Int; 2023 Dec; 30(60):124854-124865. PubMed ID: 36194320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermally enhanced adsorption and persulfate oxidation-driven regeneration on FeCl
    Zeng S; Kan E
    Chemosphere; 2022 Jan; 286(Pt 3):131950. PubMed ID: 34426274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.