These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 32795794)

  • 21. Effects of simulated drought on the carbon balance of Everglades short-hydroperiod marsh.
    Malone SL; Starr G; Staudhammer CL; Ryan MG
    Glob Chang Biol; 2013 Aug; 19(8):2511-23. PubMed ID: 23554284
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contrasting ecosystem CO
    Lu W; Xiao J; Liu F; Zhang Y; Liu C; Lin G
    Glob Chang Biol; 2017 Mar; 23(3):1180-1198. PubMed ID: 27400026
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Incorporation of uncertainty to improve projections of tidal wetland elevation and carbon accumulation with sea-level rise.
    Buffington KJ; Janousek CN; Dugger BD; Callaway JC; Schile-Beers LM; Borgnis Sloane E; Thorne KM
    PLoS One; 2021; 16(10):e0256707. PubMed ID: 34669722
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Soil microbial community development across a 32-year coastal wetland restoration time series and the relative importance of environmental factors.
    Abbott KM; Quirk T; Fultz LM
    Sci Total Environ; 2022 May; 821():153359. PubMed ID: 35081409
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a Chesapeake Bay wetland: review of a 28-year study.
    Drake BG
    Glob Chang Biol; 2014 Nov; 20(11):3329-43. PubMed ID: 24820033
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon fluxes of China's coastal wetlands and impacts of reclamation and restoration.
    Lu W; Xiao J; Gao H; Jia Q; Li Z; Liang J; Xing Q; Mao D; Li H; Chu X; Chen H; Guo H; Han G; Zhao B; Chen L; Lai DYF; Liu S; Lin G
    Glob Chang Biol; 2024 Apr; 30(4):e17280. PubMed ID: 38613249
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Will fluctuations in salt marsh-mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise?
    McKee KL; Vervaeke WC
    Glob Chang Biol; 2018 Mar; 24(3):1224-1238. PubMed ID: 29044820
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel microbial community composition and carbon biogeochemistry emerge over time following saltwater intrusion in wetlands.
    Dang C; Morrissey EM; Neubauer SC; Franklin RB
    Glob Chang Biol; 2019 Feb; 25(2):549-561. PubMed ID: 30537235
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Salinity increases under sea level rise strengthens the chemical protection of SOC in subtropical tidal marshes.
    Xu H; Wang C; Ge M; Sardans J; Peñuelas J; Tong C; Wang W
    Sci Total Environ; 2024 Dec; 954():176512. PubMed ID: 39368506
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationships between ecosystem properties and sea-level rise vulnerability of tidal wetlands of the U.S. Mid-Atlantic.
    Elsey-Quirk T; Watson EB; Raper K; Kreeger D; Paudel B; Haaf L; Maxwell-Doyle M; Padeletti A; Reilly E; Velinsky DJ
    Environ Monit Assess; 2022 Mar; 194(4):292. PubMed ID: 35325310
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Effect of environmental and biotic factors on net ecosystem CO
    Chu XJ; Han GX; Zhu SY; Lyu JZ; Yu JB
    Ying Yong Sheng Tai Xue Bao; 2016 Jul; 27(7):2091-2100. PubMed ID: 29737115
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Methane emissions reduce the radiative cooling effect of a subtropical estuarine mangrove wetland by half.
    Liu J; Zhou Y; Valach A; Shortt R; Kasak K; Rey-Sanchez C; Hemes KS; Baldocchi D; Lai DYF
    Glob Chang Biol; 2020 Sep; 26(9):4998-5016. PubMed ID: 32574398
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sea-level rise thresholds for stability of salt marshes in a riverine versus a marine dominated estuary.
    Wu W; Biber P; Mishra DR; Ghosh S
    Sci Total Environ; 2020 May; 718():137181. PubMed ID: 32105940
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial response of coastal marshes to increased atmospheric CO2.
    Ratliff KM; Braswell AE; Marani M
    Proc Natl Acad Sci U S A; 2015 Dec; 112(51):15580-4. PubMed ID: 26644577
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Total ecosystem carbon stocks at the marine-terrestrial interface: Blue carbon of the Pacific Northwest Coast, United States.
    Kauffman JB; Giovanonni L; Kelly J; Dunstan N; Borde A; Diefenderfer H; Cornu C; Janousek C; Apple J; Brophy L
    Glob Chang Biol; 2020 Oct; 26(10):5679-5692. PubMed ID: 32779311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of carbon flux gradients and dominant processes in a subtropical highly urbanized coastal ecosystem.
    Jiang N; Sun W; Chen Z; Xiong X; Wang Y; Zeng S
    Sci Total Environ; 2024 Nov; 952():175855. PubMed ID: 39214352
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems.
    Zhou M; Butterbach-Bahl K; Vereecken H; Brüggemann N
    Glob Chang Biol; 2017 Mar; 23(3):1338-1352. PubMed ID: 27416519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plants mediate soil organic matter decomposition in response to sea level rise.
    Mueller P; Jensen K; Megonigal JP
    Glob Chang Biol; 2016 Jan; 22(1):404-14. PubMed ID: 26342160
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency.
    Schile LM; Callaway JC; Morris JT; Stralberg D; Parker VT; Kelly M
    PLoS One; 2014; 9(2):e88760. PubMed ID: 24551156
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise.
    Beckett LH; Baldwin AH; Kearney MS
    PLoS One; 2016; 11(7):e0159753. PubMed ID: 27467784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.