These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 32795948)
21. Energy landscapes, folding mechanisms, and kinetics of RNA tetraloop hairpins. Chakraborty D; Collepardo-Guevara R; Wales DJ J Am Chem Soc; 2014 Dec; 136(52):18052-61. PubMed ID: 25453221 [TBL] [Abstract][Full Text] [Related]
22. Configurational entropy, transition rates, and optimal interactions for rapid folding in coarse-grained model proteins. Colberg M; Schofield J J Chem Phys; 2022 Sep; 157(12):125101. PubMed ID: 36182418 [TBL] [Abstract][Full Text] [Related]
23. The free energy landscape analysis of protein (FIP35) folding dynamics. Krivov SV J Phys Chem B; 2011 Oct; 115(42):12315-24. PubMed ID: 21902225 [TBL] [Abstract][Full Text] [Related]
24. Energy landscape and multiroute folding of topologically complex proteins adenylate kinase and 2ouf-knot. Li W; Terakawa T; Wang W; Takada S Proc Natl Acad Sci U S A; 2012 Oct; 109(44):17789-94. PubMed ID: 22753508 [TBL] [Abstract][Full Text] [Related]
25. Energy landscapes and properties of biomolecules. Wales DJ Phys Biol; 2005 Nov; 2(4):S86-93. PubMed ID: 16280625 [TBL] [Abstract][Full Text] [Related]
26. Inherent structure analysis of protein folding. Kim J; Keyes T J Phys Chem B; 2007 Mar; 111(10):2647-57. PubMed ID: 17311447 [TBL] [Abstract][Full Text] [Related]
27. Sequential barriers and an obligatory metastable intermediate define the apparent two-state folding pathway of the ubiquitin-like PB1 domain of NBR1. Chen P; Long J; Searle MS J Mol Biol; 2008 Mar; 376(5):1463-77. PubMed ID: 18234223 [TBL] [Abstract][Full Text] [Related]
28. Random walks in a free energy landscape combining augmented molecular dynamics simulations with a dynamic graph neural network model. Kamberaj H J Mol Graph Model; 2022 Jul; 114():108199. PubMed ID: 35462186 [TBL] [Abstract][Full Text] [Related]
29. Thermodynamics and kinetics of protein folding: an evolutionary perspective. Demetrius L J Theor Biol; 2002 Aug; 217(3):397-411. PubMed ID: 12270283 [TBL] [Abstract][Full Text] [Related]
30. Using path sampling to build better Markovian state models: predicting the folding rate and mechanism of a tryptophan zipper beta hairpin. Singhal N; Snow CD; Pande VS J Chem Phys; 2004 Jul; 121(1):415-25. PubMed ID: 15260562 [TBL] [Abstract][Full Text] [Related]
31. Ruggedness in the Free Energy Landscape Dictates Misfolding of the Prion Protein. Moulick R; Goluguri RR; Udgaonkar JB J Mol Biol; 2019 Feb; 431(4):807-824. PubMed ID: 30611749 [TBL] [Abstract][Full Text] [Related]
32. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Bryngelson JD; Onuchic JN; Socci ND; Wolynes PG Proteins; 1995 Mar; 21(3):167-95. PubMed ID: 7784423 [TBL] [Abstract][Full Text] [Related]
33. Sampling of states for estimating the folding funnel entropy and energy landscape of a model alpha-helical hairpin peptide. Chapagain PP; Parra JL; Gerstman BS; Liu Y J Chem Phys; 2007 Aug; 127(7):075103. PubMed ID: 17718634 [TBL] [Abstract][Full Text] [Related]
34. High-Resolution Mapping of a Repeat Protein Folding Free Energy Landscape. Fossat MJ; Dao TP; Jenkins K; Dellarole M; Yang Y; McCallum SA; Garcia AE; Barrick D; Roumestand C; Royer CA Biophys J; 2016 Dec; 111(11):2368-2376. PubMed ID: 27926838 [TBL] [Abstract][Full Text] [Related]
35. Exploring the folding free energy landscape of insulin using bias exchange metadynamics. Todorova N; Marinelli F; Piana S; Yarovsky I J Phys Chem B; 2009 Mar; 113(11):3556-64. PubMed ID: 19243106 [TBL] [Abstract][Full Text] [Related]
36. Estimation of protein folding free energy barriers from calorimetric data by multi-model Bayesian analysis. Naganathan AN; Perez-Jimenez R; Muñoz V; Sanchez-Ruiz JM Phys Chem Chem Phys; 2011 Oct; 13(38):17064-76. PubMed ID: 21769353 [TBL] [Abstract][Full Text] [Related]
37. Hierarchic finite level energy landscape model: to describe the refolding kinetics of phosphoglycerate kinase. Osváth S; Herényi L; Závodszky P; Fidy J; Köhler G J Biol Chem; 2006 Aug; 281(34):24375-80. PubMed ID: 16807241 [TBL] [Abstract][Full Text] [Related]
38. Coarse-Grained Simulations of Protein Folding: Bridging Theory and Experiments. Contessoto VG; de Oliveira VM; Leite VBP Methods Mol Biol; 2022; 2376():303-315. PubMed ID: 34845616 [TBL] [Abstract][Full Text] [Related]
39. Effects of Surface Tethering on the Thermodynamics and Kinetics of Frustrated Protein Folding. Du J; Yin H; Lu Y; Lu T; Chen T J Phys Chem B; 2022 Jul; 126(26):4776-4786. PubMed ID: 35731862 [TBL] [Abstract][Full Text] [Related]
40. Multiscale simulations of protein folding: application to formation of secondary structures. Xu J; Ren Y; Li J J Biomol Struct Dyn; 2013; 31(7):779-87. PubMed ID: 22908945 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]