These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 32796198)
1. Can a Novel Deep Neural Network Improve the Computer-Aided Detection of Solid Pulmonary Nodules and the Rate of False-Positive Findings in Comparison to an Established Machine Learning Computer-Aided Detection? Perl RM; Grimmer R; Hepp T; Horger MS Invest Radiol; 2021 Feb; 56(2):103-108. PubMed ID: 32796198 [TBL] [Abstract][Full Text] [Related]
2. Validation of a deep learning computer aided system for CT based lung nodule detection, classification, and growth rate estimation in a routine clinical population. Murchison JT; Ritchie G; Senyszak D; Nijwening JH; van Veenendaal G; Wakkie J; van Beek EJR PLoS One; 2022; 17(5):e0266799. PubMed ID: 35511758 [TBL] [Abstract][Full Text] [Related]
3. A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional neural networks and ensemble learning. Huang W; Xue Y; Wu Y PLoS One; 2019; 14(7):e0219369. PubMed ID: 31299053 [TBL] [Abstract][Full Text] [Related]
4. Performance of a deep learning-based lung nodule detection system as an alternative reader in a Chinese lung cancer screening program. Cui X; Zheng S; Heuvelmans MA; Du Y; Sidorenkov G; Fan S; Li Y; Xie Y; Zhu Z; Dorrius MD; Zhao Y; Veldhuis RNJ; de Bock GH; Oudkerk M; van Ooijen PMA; Vliegenthart R; Ye Z Eur J Radiol; 2022 Jan; 146():110068. PubMed ID: 34871936 [TBL] [Abstract][Full Text] [Related]
5. Deep Convolutional Neural Network-based Software Improves Radiologist Detection of Malignant Lung Nodules on Chest Radiographs. Sim Y; Chung MJ; Kotter E; Yune S; Kim M; Do S; Han K; Kim H; Yang S; Lee DJ; Choi BW Radiology; 2020 Jan; 294(1):199-209. PubMed ID: 31714194 [TBL] [Abstract][Full Text] [Related]
6. The use of computer-aided detection for the assessment of pulmonary arterial filling defects at computed tomographic angiography. Walsham AC; Roberts HC; Kashani HM; Mongiardi CN; Ng YL; Patsios DA J Comput Assist Tomogr; 2008; 32(6):913-8. PubMed ID: 19204454 [TBL] [Abstract][Full Text] [Related]
7. Clinical evaluation of a deep-learning-based computer-aided detection system for the detection of pulmonary nodules in a large teaching hospital. Martins Jarnalo CO; Linsen PVM; Blazís SP; van der Valk PHM; Dickerscheid DBM Clin Radiol; 2021 Nov; 76(11):838-845. PubMed ID: 34404517 [TBL] [Abstract][Full Text] [Related]
8. Detection of Subsolid Nodules in Lung Cancer Screening: Complementary Sensitivity of Visual Reading and Computer-Aided Diagnosis. Silva M; Schaefer-Prokop CM; Jacobs C; Capretti G; Ciompi F; van Ginneken B; Pastorino U; Sverzellati N Invest Radiol; 2018 Aug; 53(8):441-449. PubMed ID: 29543693 [TBL] [Abstract][Full Text] [Related]
9. Improved detection of pulmonary nodules on energy-subtracted chest radiographs with a commercial computer-aided diagnosis software: comparison with human observers. Szucs-Farkas Z; Patak MA; Yuksel-Hatz S; Ruder T; Vock P Eur Radiol; 2010 Jun; 20(6):1289-96. PubMed ID: 19936752 [TBL] [Abstract][Full Text] [Related]
10. The effect of pulmonary vessel suppression on computerized detection of nodules in chest CT scans. Gu X; Xie W; Fang Q; Zhao J; Li Q Med Phys; 2020 Oct; 47(10):4917-4927. PubMed ID: 32681587 [TBL] [Abstract][Full Text] [Related]
11. Research progress of computer aided diagnosis system for pulmonary nodules in CT images. Wang Y; Wu B; Zhang N; Liu J; Ren F; Zhao L J Xray Sci Technol; 2020; 28(1):1-16. PubMed ID: 31815727 [TBL] [Abstract][Full Text] [Related]
12. Commercially available computer-aided detection system for pulmonary nodules on thin-section images using 64 detectors-row CT: preliminary study of 48 cases. Yanagawa M; Honda O; Yoshida S; Ono Y; Inoue A; Daimon T; Sumikawa H; Mihara N; Johkoh T; Tomiyama N; Nakamura H Acad Radiol; 2009 Aug; 16(8):924-33. PubMed ID: 19394873 [TBL] [Abstract][Full Text] [Related]
13. Deep learning-based CAD schemes for the detection and classification of lung nodules from CT images: A survey. Mastouri R; Khlifa N; Neji H; Hantous-Zannad S J Xray Sci Technol; 2020; 28(4):591-617. PubMed ID: 32568165 [TBL] [Abstract][Full Text] [Related]
14. Efficiency of a computer-aided diagnosis (CAD) system with deep learning in detection of pulmonary nodules on 1-mm-thick images of computed tomography. Kozuka T; Matsukubo Y; Kadoba T; Oda T; Suzuki A; Hyodo T; Im S; Kaida H; Yagyu Y; Tsurusaki M; Matsuki M; Ishii K Jpn J Radiol; 2020 Nov; 38(11):1052-1061. PubMed ID: 32592003 [TBL] [Abstract][Full Text] [Related]
16. Computer-aided detection of artificial pulmonary nodules using an ex vivo lung phantom: influence of exposure parameters and iterative reconstruction. Wielpütz MO; Wroblewski J; Lederlin M; Dinkel J; Eichinger M; Koenigkam-Santos M; Biederer J; Kauczor HU; Puderbach MU; Jobst BJ Eur J Radiol; 2015 May; 84(5):1005-11. PubMed ID: 25740701 [TBL] [Abstract][Full Text] [Related]
17. Computer-aided Detection of Subsolid Nodules at Chest CT: Improved Performance with Deep Learning-based CT Section Thickness Reduction. Park S; Lee SM; Kim W; Park H; Jung KH; Do KH; Seo JB Radiology; 2021 Apr; 299(1):211-219. PubMed ID: 33560190 [TBL] [Abstract][Full Text] [Related]
18. Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography. Samala RK; Chan HP; Hadjiiski L; Helvie MA; Wei J; Cha K Med Phys; 2016 Dec; 43(12):6654. PubMed ID: 27908154 [TBL] [Abstract][Full Text] [Related]
19. Benefit of computer-aided detection analysis for the detection of subsolid and solid lung nodules on thin- and thick-section CT. Godoy MC; Kim TJ; White CS; Bogoni L; de Groot P; Florin C; Obuchowski N; Babb JS; Salganicoff M; Naidich DP; Anand V; Park S; Vlahos I; Ko JP AJR Am J Roentgenol; 2013 Jan; 200(1):74-83. PubMed ID: 23255744 [TBL] [Abstract][Full Text] [Related]
20. Pulmonary nodules detection assistant platform: An effective computer aided system for early pulmonary nodules detection in physical examination. Han Y; Qi H; Wang L; Chen C; Miao J; Xu H; Wang Z; Guo Z; Xu Q; Lin Q; Liu H; Lu J; Liang F; Feng W; Li H; Liu Y Comput Methods Programs Biomed; 2022 Apr; 217():106680. PubMed ID: 35176595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]