These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 32796553)

  • 1. Brassinosteroid Priming Improves Peanut Drought Tolerance via Eliminating Inhibition on Genes in Photosynthesis and Hormone Signaling.
    Huang L; Zhang L; Zeng R; Wang X; Zhang H; Wang L; Liu S; Wang X; Chen T
    Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32796553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and Analysis of Genes Involved in Auxin, Abscisic Acid, Gibberellin, and Brassinosteroid Metabolisms Under Drought Stress in Tender Shoots of Tea Plants.
    Li H; Teng RM; Liu JX; Yang RY; Yang YZ; Lin SJ; Han MH; Liu JY; Zhuang J
    DNA Cell Biol; 2019 Nov; 38(11):1292-1302. PubMed ID: 31560570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melatonin seed priming improves early establishment and water stress tolerance of peanut.
    de Camargo Santos A; Schaffer B; Ioannou AG; Moon P; Shahid M; Rowland D; Tillman B; Bremgartner M; Fotopoulos V; Bassil E
    Plant Physiol Biochem; 2024 Jun; 211():108664. PubMed ID: 38703498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative transcriptome analysis of genes involved in the drought stress response of two peanut (Arachis hypogaea L.) varieties.
    Jiang C; Li X; Zou J; Ren J; Jin C; Zhang H; Yu H; Jin H
    BMC Plant Biol; 2021 Jan; 21(1):64. PubMed ID: 33504328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional Differences in Peanut (Arachis hypogaea L.) Seeds at the Freshly Harvested, After-ripening and Newly Germinated Seed Stages: Insights into the Regulatory Networks of Seed Dormancy Release and Germination.
    Xu P; Tang G; Cui W; Chen G; Ma CL; Zhu J; Li P; Shan L; Liu Z; Wan S
    PLoS One; 2020; 15(1):e0219413. PubMed ID: 31899920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages.
    Liu S; Zenda T; Li J; Wang Y; Liu X; Duan H
    PLoS One; 2020; 15(10):e0240468. PubMed ID: 33057352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide transcriptomic analysis of BR-deficient Micro-Tom reveals correlations between drought stress tolerance and brassinosteroid signaling in tomato.
    Lee J; Shim D; Moon S; Kim H; Bae W; Kim K; Kim YH; Rhee SK; Hong CP; Hong SY; Lee YJ; Sung J; Ryu H
    Plant Physiol Biochem; 2018 Jun; 127():553-560. PubMed ID: 29723826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WRKY transcription factors are involved in brassinosteroid signaling and mediate the crosstalk between plant growth and drought tolerance.
    Chen J; Yin Y
    Plant Signal Behav; 2017 Nov; 12(11):e1365212. PubMed ID: 29027842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-Seq Analysis Reveals MAPKKK Family Members Related to Drought Tolerance in Maize.
    Liu Y; Zhou M; Gao Z; Ren W; Yang F; He H; Zhao J
    PLoS One; 2015; 10(11):e0143128. PubMed ID: 26599013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis and Signal Transduction of ABA, JA, and BRs in Response to Drought Stress of Kentucky Bluegrass.
    Chen Y; Chen Y; Shi Z; Jin Y; Sun H; Xie F; Zhang L
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30875790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Down-regulation of BdBRI1, a putative brassinosteroid receptor gene produces a dwarf phenotype with enhanced drought tolerance in Brachypodium distachyon.
    Feng Y; Yin Y; Fei S
    Plant Sci; 2015 May; 234():163-73. PubMed ID: 25804819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological and biochemical characterisation of watered and drought-stressed barley mutants in the HvDWARF gene encoding C6-oxidase involved in brassinosteroid biosynthesis.
    Janeczko A; Gruszka D; Pociecha E; Dziurka M; Filek M; Jurczyk B; Kalaji HM; Kocurek M; Waligórski P
    Plant Physiol Biochem; 2016 Feb; 99():126-41. PubMed ID: 26752435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RD26 mediates crosstalk between drought and brassinosteroid signalling pathways.
    Ye H; Liu S; Tang B; Chen J; Xie Z; Nolan TM; Jiang H; Guo H; Lin HY; Li L; Wang Y; Tong H; Zhang M; Chu C; Li Z; Aluru M; Aluru S; Schnable PS; Yin Y
    Nat Commun; 2017 Feb; 8():14573. PubMed ID: 28233777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative leaf proteomics of drought-tolerant and -susceptible peanut in response to water stress.
    Katam R; Sakata K; Suravajhala P; Pechan T; Kambiranda DM; Naik KS; Guo B; Basha SM
    J Proteomics; 2016 Jun; 143():209-226. PubMed ID: 27282920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome profiling reveals characteristics of hairy root and the role of AhGLK1 in response to drought stress and post-drought recovery in peanut.
    Liu X; Su L; Li L; Zhang Z; Li X; Liang Q; Li L
    BMC Genomics; 2023 Mar; 24(1):119. PubMed ID: 36927268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomic analysis reveals the differentially expressed genes and pathways involved in drought tolerance in pearl millet [Pennisetum glaucum (L.) R. Br].
    Dudhate A; Shinde H; Tsugama D; Liu S; Takano T
    PLoS One; 2018; 13(4):e0195908. PubMed ID: 29652907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic features involved in drought stress tolerance mechanisms in peanut nodules and their contribution to biological nitrogen fixation.
    Furlan AL; Bianucci E; Castro S; Dietz KJ
    Plant Sci; 2017 Oct; 263():12-22. PubMed ID: 28818367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene expression and functional analyses in brassinosteroid-mediated stress tolerance.
    Divi UK; Rahman T; Krishna P
    Plant Biotechnol J; 2016 Jan; 14(1):419-32. PubMed ID: 25973891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome analysis provides insights into the stress response in cultivated peanut (Arachis hypogaea L.) subjected to drought-stress.
    Gundaraniya SA; Ambalam PS; Budhwar R; Padhiyar SM; Tomar RS
    Mol Biol Rep; 2023 Aug; 50(8):6691-6701. PubMed ID: 37378750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic basis for drought-resistance in Brassica napus L.
    Wang P; Yang C; Chen H; Song C; Zhang X; Wang D
    Sci Rep; 2017 Jan; 7():40532. PubMed ID: 28091614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.