These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32796627)

  • 1. One-Step Assembly of Fluorescence-Based Cyanide Sensors from Inexpensive, Off-The-Shelf Materials.
    Fernandes GE; Chang YW; Sharma A; Tutt S
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32796627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conjugated polymer microspheres for "turn-off"/"turn-on" fluorescence optosensing of inorganic ions in aqueous media.
    Álvarez-Diaz A; Salinas-Castillo A; Camprubí-Robles M; Costa-Fernández JM; Pereiro R; Mallavia R; Sanz-Medel A
    Anal Chem; 2011 Apr; 83(7):2712-8. PubMed ID: 21370833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Highly Selective Sensor for Cyanide in Organic Media and on Solid Surfaces.
    Barare B; Babahan I; Hijji YM; Bonyi E; Tadesse S; Aslan K
    Sensors (Basel); 2016 Feb; 16(3):271. PubMed ID: 26927099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient On-Off Ratiometric Fluorescence Probe for Cyanide Ion Based on Perturbation of the Interaction between Gold Nanoclusters and a Copper(II)-Phthalocyanine Complex.
    Shojaeifard Z; Hemmateenejad B; Shamsipur M
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15177-86. PubMed ID: 27211049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new colorimetric and ratiometric fluorescent probe for selective recognition of cyanide in aqueous media.
    Dong ZM; Ren H; Wang JN; Chao JB; Wang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 217():27-34. PubMed ID: 30925317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel salicylaldehyde derivatives as fluorescence turn-on sensors for cyanide ion.
    Niamnont N; Khumsri A; Promchat A; Tumcharern G; Sukwattanasinitt M
    J Hazard Mater; 2014 Sep; 280():458-63. PubMed ID: 25194814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective and Sensitive Detection of Cyanide Based on the Displacement Strategy Using a Water-Soluble Fluorescent Probe.
    La M; Hao Y; Wang Z; Han GC; Qu L
    J Anal Methods Chem; 2016; 2016():1462013. PubMed ID: 26881185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stepwise Assembly of Turn-on Fluorescence Sensors in Multicomponent Metal-Organic Frameworks for in Vitro Cyanide Detection.
    Li J; Yuan S; Qin JS; Pang J; Zhang P; Zhang Y; Huang Y; Drake HF; Liu WR; Zhou HC
    Angew Chem Int Ed Engl; 2020 Jun; 59(24):9319-9323. PubMed ID: 32174003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blue-emitting copper nanoparticles as a fluorescent probe for detection of cyanide ions.
    Momeni S; Ahmadi R; Safavi A; Nabipour I
    Talanta; 2017 Dec; 175():514-521. PubMed ID: 28842026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Off-On-Off Cascade Recognition of Cyanide, Mercury, and Aluminum Using
    Bayindir S; Hussein AS
    ACS Omega; 2024 Apr; 9(15):17602-17615. PubMed ID: 38645373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turn-on fluorescent cyanide sensor based on copper ion-modified CdTe quantum dots.
    Shang L; Zhang L; Dong S
    Analyst; 2009 Jan; 134(1):107-13. PubMed ID: 19082182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new colorimetric and fluorescent probe based on Rhodamine B hydrazone derivatives for cyanide and Cu
    Long C; Hu JH; Fu QQ; Ni PW
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Aug; 219():297-306. PubMed ID: 31051424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel indolium salt as a highly sensitive and selective fluorescent sensor for cyanide detection in water.
    Promchat A; Rashatasakhon P; Sukwattanasinitt M
    J Hazard Mater; 2017 May; 329():255-261. PubMed ID: 28183014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyanide Sensing in Water Using a Copper Metallogel through "Turn-on" Fluorescence.
    Sebastian A; Prasad E
    Langmuir; 2020 Sep; 36(35):10537-10547. PubMed ID: 32841041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodamine Based Turn-On Sensors for Ni(2+) and Cr(3+) in Organic Media: Detecting CN(-) via the Metal Displacement Approach.
    Weerasinghe AJ; Oyeamalu AN; Abebe FA; Venter AR; Sinn E
    J Fluoresc; 2016 May; 26(3):891-8. PubMed ID: 26994908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyanide detection using a benzimidazole derivative in aqueous media.
    Li JB; Hu JH; Chen JJ; Qi J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():773-7. PubMed ID: 24998684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PEGylated meso-arylporpholactone metal complexes as optical cyanide sensors in water.
    Worlinsky JL; Halepas S; Brückner C
    Org Biomol Chem; 2014 Jun; 12(23):3991-4001. PubMed ID: 24825173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous glucose sensing with fluorescent thin-film hydrogels. 2. Fiber optic sensor fabrication and in vitro testing.
    Thoniyot P; Cappuccio FE; Gamsey S; Cordes DB; Wessling RA; Singaram B
    Diabetes Technol Ther; 2006 Jun; 8(3):279-87. PubMed ID: 16800749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of cellulose/salicylaldehyde thiosemicarbazone complexes on PVA based hydrogels: Portable, reusable, and high-precision luminescence sensing of Cu
    Yue Y; Gu J; Han J; Wu Q; Jiang J
    J Hazard Mater; 2021 Jan; 401():123798. PubMed ID: 33113738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel cyanide supramolecular fluorescent chemosensor constructed from a quinoline hydrazone functionalized-pillar[5]arene.
    Yang HL; Dang ZJ; Zhang YM; Wei TB; Yao H; Zhu W; Fan YQ; Jiang XM; Lin Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep; 220():117136. PubMed ID: 31136864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.