These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32796627)

  • 21. Anion-binding-induced and reduced fluorescence emission (ABIFE & ABRFE): A fluorescent chemo sensor for selective turn-on/off detection of cyanide and fluoride.
    Murugesan K; Jeyasingh V; Lakshminarayanan S; Selvapalam N; Dass G; Piramuthu L
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jan; 245():118943. PubMed ID: 32980761
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective "Turn-On" Fluorescent Sensor for Cyanide in Aqueous Environment and Test Strips.
    Al-Zahrani FAM
    J Fluoresc; 2019 Jan; 29(1):1-8. PubMed ID: 30607669
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new unsymmetrical azine derivative based on coumarin group as dual-modal sensor for CN
    Hu JH; Sun Y; Qi J; Li Q; Wei TB
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():125-133. PubMed ID: 28024246
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon-dot-based fluorescent turn-on sensor for selectively detecting sulfide anions in totally aqueous media and imaging inside live cells.
    Hou X; Zeng F; Du F; Wu S
    Nanotechnology; 2013 Aug; 24(33):335502. PubMed ID: 23892368
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cu2+-modulated cysteamine-capped CdS quantum dots as a turn-on fluorescence sensor for cyanide recognition.
    Noipa T; Tuntulani T; Ngeontae W
    Talanta; 2013 Feb; 105():320-6. PubMed ID: 23598025
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly sensitive and selective chip-based fluorescent sensor for mercuric ion: development and comparison of turn-on and turn-off systems.
    Du J; Liu M; Lou X; Zhao T; Wang Z; Xue Y; Zhao J; Xu Y
    Anal Chem; 2012 Sep; 84(18):8060-6. PubMed ID: 22957843
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Reversible Nanolamp for Instantaneous Monitoring of Cyanide Based on an Elsner-Like Reaction.
    Qing Z; Hou L; Yang L; Zhu L; Yang S; Zheng J; Yang R
    Anal Chem; 2016 Oct; 88(19):9759-9765. PubMed ID: 27635784
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Peptoid-Based Fluorescent Sensor for Cyanide Detection.
    Lim B; Lee J
    Molecules; 2016 Mar; 21(3):339. PubMed ID: 26978334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phenothiazine Based Donor-Acceptor Compounds with Solid-State Emission in the Yellow to NIR Region and Their Highly Selective and Sensitive Detection of Cyanide Ion in ppb Level.
    Ramachandran E; Vandarkuzhali SAA; Sivaraman G; Dhamodharan R
    Chemistry; 2018 Aug; 24(43):11042-11050. PubMed ID: 29737000
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly selective colorimetric sensing of cyanide based on formation of dipyrrin adducts.
    Ding Y; Li T; Zhu W; Xie Y
    Org Biomol Chem; 2012 Jun; 10(21):4201-7. PubMed ID: 22522605
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Colorimetric and Fluorescent Probe Based on Michael Acceptor Type Diketopyrrolopyrrole for Cyanide Detection.
    Wang L; Zhuo S; Cao D
    J Fluoresc; 2017 Sep; 27(5):1587-1594. PubMed ID: 28421322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermoresponsive copolymer containing a coumarin-spiropyran conjugate: reusable fluorescent sensor for cyanide anion detection in water.
    Shiraishi Y; Sumiya S; Manabe K; Hirai T
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4649-56. PubMed ID: 22043965
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Concurrent detection and treatment of cyanide-contaminated water using mechanosynthesized receptors.
    Nair RR; Raju M; Debnath S; Ghosh R; Chatterjee PB
    Analyst; 2020 Aug; 145(16):5647-5656. PubMed ID: 32638714
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Instant Detection of Hydrogen Cyanide Gas and Cyanide Salts in Solid Matrices and Water by using Cu
    Nair RR; Raju M; Jana K; Mondal D; Suresh E; Ganguly B; Chatterjee PB
    Chemistry; 2018 Jul; 24(42):10721-10731. PubMed ID: 29797369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescent imidazole-based chemosensors for the reversible detection of cyanide and mercury ions.
    Emandi G; Flanagan KJ; Senge MO
    Photochem Photobiol Sci; 2018 Oct; 17(10):1450-1461. PubMed ID: 30259951
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A highly selective cyanide sensing in water via fluorescence change and its application to in vivo imaging.
    Chung SY; Nam SW; Lim J; Park S; Yoon J
    Chem Commun (Camb); 2009 May; (20):2866-8. PubMed ID: 19436892
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles.
    Chen J; Zeng F; Wu S; Su J; Zhao J; Tong Z
    Nanotechnology; 2009 Sep; 20(36):365502. PubMed ID: 19687556
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A simple pyrimidine based colorimetric and fluorescent chemosensor for sequential detection of copper (II) and cyanide ions and its application in real samples.
    Mohammadi A; Ghasemi Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117730. PubMed ID: 31718972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent Development in Coordination Compounds as a Sensor for Cyanide Ions in Biological and Environmental Segments.
    Gul Z; Khan S; Ullah S; Ullah H; Khan MU; Ullah M; Altaf AA
    Crit Rev Anal Chem; 2024; 54(3):508-528. PubMed ID: 35671238
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A highly sensitive "ON-OFF" optical sensor for the selective detection of cyanide ions in 100% aqueous solutions based on hydrogen bonding and water assisted aggregation induced emission.
    Nazarian R; Darabi HR; Aghapoor K; Firouzi R; Sayahi H
    Chem Commun (Camb); 2020 Aug; 56(63):8992-8995. PubMed ID: 32638723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.