These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32796675)

  • 1. A Novel Approach to Condition Monitoring of the Cutting Process Using Recurrent Neural Networks.
    Silva R; Araújo A
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32796675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Multivariate Cutting Force-Based Tool Wear Monitoring Method Using One-Dimensional Convolutional Neural Network.
    Yang X; Yuan R; Lv Y; Li L; Song H
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Machine Learning-Based Methodology for Tool Wear Prediction Using Acoustic Emission Signals.
    Ferrando Chacón JL; Fernández de Barrena T; García A; Sáez de Buruaga M; Badiola X; Vicente J
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. System for Tool-Wear Condition Monitoring in CNC Machines under Variations of Cutting Parameter Based on Fusion Stray Flux-Current Processing.
    Jaen-Cuellar AY; Osornio-Ríos RA; Trejo-Hernández M; Zamudio-Ramírez I; Díaz-Saldaña G; Pacheco-Guerrero JP; Antonino-Daviu JA
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Order Analysis and Stacked Sparse Auto-Encoder Feature Learning Method for Milling Tool Wear Condition Monitoring.
    Ou J; Li H; Huang G; Zhou Q
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32438608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confidence Interval Estimation for Cutting Tool Wear Prediction in Turning Using Bootstrap-Based Artificial Neural Networks.
    Colantonio L; Equeter L; Dehombreux P; Ducobu F
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tool Condition Monitoring Using Machine Tool Spindle Current and Long Short-Term Memory Neural Network Model Analysis.
    Turšič N; Klančnik S
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of Tool Wear Using Artificial Neural Networks during Turning of Hardened Steel.
    Twardowski P; Wiciak-Pikuła M
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31546732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer Learning-Based Condition Monitoring of Single Point Cutting Tool.
    Naveen Venkatesh S; Arun Balaji P; Elangovan M; Annamalai K; Indira V; Sugumaran V; Mahamuni VS
    Comput Intell Neurosci; 2022; 2022():3205960. PubMed ID: 35875754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tool Condition Monitoring of the Cutting Capability of a Turning Tool Based on Thermography.
    Brili N; Ficko M; Klančnik S
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34641006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Review of Indirect Tool Condition Monitoring Systems and Decision-Making Methods in Turning: Critical Analysis and Trends.
    Kuntoğlu M; Aslan A; Pimenov DY; Usca ÜA; Salur E; Gupta MK; Mikolajczyk T; Giasin K; Kapłonek W; Sharma S
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Insert Condition Classification System for CNC Lathes Using Power Spectral Density Distribution of Accelerometer Vibration Signals.
    Huang YW; Yeh SS
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33086740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic Identification of Tool Wear Based on Thermography and a Convolutional Neural Network during the Turning Process.
    Brili N; Ficko M; Klančnik S
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33803442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generic Cutting Force Modeling with Comprehensively Considering Tool Edge Radius, Tool Flank Wear and Tool Runout in Micro-End Milling.
    Gao S; Duan X; Zhu K; Zhang Y
    Micromachines (Basel); 2022 Oct; 13(11):. PubMed ID: 36363826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virtual sensors for on-line wheel wear and part roughness measurement in the grinding process.
    Arriandiaga A; Portillo E; Sánchez JA; Cabanes I; Pombo I
    Sensors (Basel); 2014 May; 14(5):8756-78. PubMed ID: 24854055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Built-Up Edge Formation during Stable State of Wear in AISI 304 Stainless Steel on Machining Performance and Surface Integrity of the Machined Part.
    Ahmed YS; Fox-Rabinovich G; Paiva JM; Wagg T; Veldhuis SC
    Materials (Basel); 2017 Oct; 10(11):. PubMed ID: 29068405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tool Wear Condition Monitoring by Combining Variational Mode Decomposition and Ensemble Learning.
    Yuan J; Liu L; Yang Z; Zhang Y
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33121086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining.
    Liang Q; Zhang D; Wu W; Zou K
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27854322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machinability Investigations of Inconel-800 Super Alloy under Sustainable Cooling Conditions.
    Gupta MK; Pruncu CI; Mia M; Singh G; Singh S; Prakash C; Sood PK; Gill HS
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30366394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.