These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 32796757)
21. Synthesis, characterization and theranostic evaluation of Indium-111 labeled multifunctional superparamagnetic iron oxide nanoparticles. Zolata H; Abbasi Davani F; Afarideh H Nucl Med Biol; 2015 Feb; 42(2):164-70. PubMed ID: 25311750 [TBL] [Abstract][Full Text] [Related]
22. Functionalization of magnetic nanoparticles with dendritic-linear-brush-like triblock copolymers and their drug release properties. He X; Wu X; Cai X; Lin S; Xie M; Zhu X; Yan D Langmuir; 2012 Aug; 28(32):11929-38. PubMed ID: 22799877 [TBL] [Abstract][Full Text] [Related]
24. Mitoxantrone- and Folate-TPGS2k Conjugate Hybrid Micellar Aggregates To Circumvent Toxicity and Enhance Efficiency for Breast Cancer Therapy. Guissi NE; Li H; Xu Y; Semcheddine F; Chen M; Su Z; Ping Q Mol Pharm; 2017 Apr; 14(4):1082-1094. PubMed ID: 28191959 [TBL] [Abstract][Full Text] [Related]
25. Preparation, characterization, and in vivo evaluation of mitoxantrone-loaded, folate-conjugated albumin nanoparticles. Zhang LK; Hou SX; Zhang JQ; Hu WJ; Wang CY Arch Pharm Res; 2010 Aug; 33(8):1193-8. PubMed ID: 20803122 [TBL] [Abstract][Full Text] [Related]
26. Engineering magnetic-molecular sequential targeting nanoparticles for anti-cancer therapy. Zhang Q; Zhu J; Song L; Zhang J; Kong D; Zhao Y; Wang Z J Mater Chem B; 2013 Dec; 1(46):6402-6410. PubMed ID: 32261338 [TBL] [Abstract][Full Text] [Related]
27. Accumulation and biological effects of cobalt ferrite nanoparticles in human pancreatic and ovarian cancer cells. Pašukonienė V; Mlynska A; Steponkienė S; Poderys V; Matulionytė M; Karabanovas V; Statkutė U; Purvinienė R; Kraśko JA; Jagminas A; Kurtinaitienė M; Strioga M; Rotomskis R Medicina (Kaunas); 2014; 50(4):237-44. PubMed ID: 25458961 [TBL] [Abstract][Full Text] [Related]
28. Superparamagnetic Iron Oxide Nanoparticles Modified with Silica Layers as Potential Agents for Lung Cancer Treatment. Reczyńska K; Marszałek M; Zarzycki A; Reczyński W; Kornaus K; Pamuła E; Chrzanowski W Nanomaterials (Basel); 2020 May; 10(6):. PubMed ID: 32486431 [TBL] [Abstract][Full Text] [Related]
29. Differential effect of polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles on BT-474 human breast cancer cell viability. Aliakbari M; Mohammadian E; Esmaeili A; Pahlevanneshan Z Toxicol In Vitro; 2019 Feb; 54():114-122. PubMed ID: 30266435 [TBL] [Abstract][Full Text] [Related]
30. Mitoxantrone-iron oxide biodistribution in blood, tumor, spleen, and liver--magnetic nanoparticles in cancer treatment. Krukemeyer MG; Krenn V; Jakobs M; Wagner W J Surg Res; 2012 Jun; 175(1):35-43. PubMed ID: 21470623 [TBL] [Abstract][Full Text] [Related]
31. High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect. Hayashi K; Ono K; Suzuki H; Sawada M; Moriya M; Sakamoto W; Yogo T ACS Appl Mater Interfaces; 2010 Jul; 2(7):1903-11. PubMed ID: 20568697 [TBL] [Abstract][Full Text] [Related]
32. Phosphocholine-decorated superparamagnetic iron oxide nanoparticles: defining the structure and probing in vivo applications. Luchini A; Irace C; Santamaria R; Montesarchio D; Heenan RK; Szekely N; Flori A; Menichetti L; Paduano L Nanoscale; 2016 May; 8(19):10078-86. PubMed ID: 26751053 [TBL] [Abstract][Full Text] [Related]
33. Role of integrated cancer nanomedicine in overcoming drug resistance. Iyer AK; Singh A; Ganta S; Amiji MM Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1784-802. PubMed ID: 23880506 [TBL] [Abstract][Full Text] [Related]
34. Luteinizing hormone-releasing hormone targeted superparamagnetic gold nanoshells for a combination therapy of hyperthermia and controlled drug delivery. Mohammad F; Al-Lohedan HA Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():692-700. PubMed ID: 28482580 [TBL] [Abstract][Full Text] [Related]
35. High drug loading and pH-responsive targeted nanocarriers from alginate-modified SPIONs for anti-tumor chemotherapy. Peng N; Wu B; Wang L; He W; Ai Z; Zhang X; Wang Y; Fan L; Ye Q Biomater Sci; 2016 Nov; 4(12):1802-1813. PubMed ID: 27792228 [TBL] [Abstract][Full Text] [Related]
36. Magnetically driven nanoparticles: De Simone M; Panetta D; Bramanti E; Giordano C; Salvatici MC; Gherardini L; Menciassi A; Burchielli S; Cinti C; Salvadori PA Contrast Media Mol Imaging; 2016 Nov; 11(6):561-571. PubMed ID: 28052582 [TBL] [Abstract][Full Text] [Related]
37. Magnetic-directed patterning of cell spheroids. Whatley BR; Li X; Zhang N; Wen X J Biomed Mater Res A; 2014 May; 102(5):1537-47. PubMed ID: 23666910 [TBL] [Abstract][Full Text] [Related]
38. Characterizing Physical Properties of Superparamagnetic Nanoparticles in Liquid Phase Using Brownian Relaxation. Wu K; Schliep K; Zhang X; Liu J; Ma B; Wang JP Small; 2017 Jun; 13(22):. PubMed ID: 28374941 [TBL] [Abstract][Full Text] [Related]
39. Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: toward a targeted nanomedicine suitable for image-guided drug delivery. Talelli M; Rijcken CJ; Lammers T; Seevinck PR; Storm G; van Nostrum CF; Hennink WE Langmuir; 2009 Feb; 25(4):2060-7. PubMed ID: 19166276 [TBL] [Abstract][Full Text] [Related]
40. Hydroxyapatite as a Vehicle for the Selective Effect of Superparamagnetic Iron Oxide Nanoparticles against Human Glioblastoma Cells. Pernal S; Wu VM; Uskoković V ACS Appl Mater Interfaces; 2017 Nov; 9(45):39283-39302. PubMed ID: 29058880 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]