These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32796760)

  • 1. Allocation of Flood Drainage Rights Based on the PSR Model and Pythagoras Fuzzy TOPSIS Method.
    Zhang D; Shen J; Liu P; Sun F
    Int J Environ Res Public Health; 2020 Aug; 17(16):. PubMed ID: 32796760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the Allocation of Regional Flood Drainage Rights in Watershed Based on Entropy Weight TOPSIS Model: A Case Study of the Jiangsu Section of the Huaihe River, China.
    Zhang K; Shen J; Han H; Zhang J
    Int J Environ Res Public Health; 2020 Jul; 17(14):. PubMed ID: 32668694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of Fuzzy Analytic Hierarchy Process and Environmental Gini Coefficient for Allocation of Regional Flood Drainage Rights.
    Zhang D; Shen J; Liu P; Zhang Q; Sun F
    Int J Environ Res Public Health; 2020 Mar; 17(6):. PubMed ID: 32244959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Urban flood resilience assessment using RAGA-PP and KL-TOPSIS model based on PSR framework: A case study of Jiangsu province, China.
    Ji J; Chen J
    Water Sci Technol; 2022 Dec; 86(12):3264-3280. PubMed ID: 36579883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allocation of Flood Drainage Rights in Watershed Using a Hybrid FBWM-Grey-TOPSIS Method: A Case Study of the Jiangsu Section of the Sunan Canal, China.
    Zhang X; Shen J; Sun F; Wang S; Zhang S; Chen J
    Int J Environ Res Public Health; 2022 Jul; 19(13):. PubMed ID: 35805839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initial allocation of flood drainage rights based on a PSR model and entropy-based matter-element theory in the Sunan Canal, China.
    Sun F; Lai X; Shen J; Nie L; Gao X
    PLoS One; 2020; 15(6):e0233570. PubMed ID: 32479523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of vulnerability to flood risk in the Padma River Basin using hydro-morphometric modeling and flood susceptibility mapping.
    Abrar MF; Iman YE; Mustak MB; Pal SK
    Environ Monit Assess; 2024 Jun; 196(7):661. PubMed ID: 38918209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the mechanism for flood control: a case of plain river network cities under extreme rainfalls.
    Wang Y; Gao C; Xu J; Zhang W; She L; Zhang Q; Bao R
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):38076-38098. PubMed ID: 36576623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Urban flood mitigation planning for Guwahati: A case of Bharalu basin.
    Sarmah T; Das S
    J Environ Manage; 2018 Jan; 206():1155-1165. PubMed ID: 29129524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Urban flood risk warning under rapid urbanization.
    Chen Y; Zhou H; Zhang H; Du G; Zhou J
    Environ Res; 2015 May; 139():3-10. PubMed ID: 25769509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal Allocation of Water Resources and Eco-Compensation Mechanism Model Based on the Interval-Fuzzy Two-Stage Stochastic Programming Method for Tingjiang River.
    Hao N; Sun P; Yang L; Qiu Y; Chen Y; Zhao W
    Int J Environ Res Public Health; 2021 Dec; 19(1):. PubMed ID: 35010407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis on historical flood and countermeasures in prevention and control of flood in Daqing River Basin.
    Tong S; Wu-Qun C; Qiu-Yu B; Xiao M; Dong L
    Environ Res; 2021 May; 196():110895. PubMed ID: 33609550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Urban Flood Risk Assessment Based on Dynamic Population Distribution and Fuzzy Comprehensive Evaluation.
    Chen H; Xu Z; Liu Y; Huang Y; Yang F
    Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. River flood prediction using fuzzy neural networks: an investigation on automated network architecture.
    Khan UT; He J; Valeo C
    Water Sci Technol; 2017 Apr; 2017(1):238-247. PubMed ID: 29698238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A combined qualitative-quantitative fuzzy method for urban flood resilience assessment in Karaj City, Iran.
    Khatooni K; Hooshyaripor F; MalekMohammadi B; Noori R
    Sci Rep; 2023 Jan; 13(1):241. PubMed ID: 36604565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the impact of flood on groundwater hydrochemistry and its suitability for drinking and irrigation in the River Periyar Lower Basin, India.
    Krishnakumar A; Jose J; Kaliraj S; Aditya SK; Krishnan KA
    Environ Sci Pollut Res Int; 2022 Apr; 29(19):28267-28306. PubMed ID: 34988810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nonstructural flood prevention measure for mitigating urban inundation impacts along with river flooding effects.
    Shih SS; Kuo PH; Lai JS
    J Environ Manage; 2019 Dec; 251():109553. PubMed ID: 31539701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Risk-trading in flood management: An economic model.
    Chang CT
    J Environ Manage; 2017 Sep; 200():1-5. PubMed ID: 28544939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flood hazard delineation in an ungauged catchment by coupling hydrologic and hydraulic models with geospatial techniques-a case study of Koraiyar basin, Tiruchirappalli City, Tamil Nadu, India.
    Natarajan S; Radhakrishnan N
    Environ Monit Assess; 2020 Oct; 192(11):689. PubMed ID: 33030599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AHP and TOPSIS based flood risk assessment- a case study of the Navsari City, Gujarat, India.
    Pathan AI; Girish Agnihotri P; Said S; Patel D
    Environ Monit Assess; 2022 Jun; 194(7):509. PubMed ID: 35713716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.