These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 32796835)

  • 21. tRNA acceptor-stem and anticodon bases embed separate features of amino acid chemistry.
    Carter CW; Wolfenden R
    RNA Biol; 2016; 13(2):145-51. PubMed ID: 26595350
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of anticodon bases and the discriminator nucleotide in the recognition of some E. coli tRNAs by their aminoacyl-tRNA synthetases.
    Shimizu M; Asahara H; Tamura K; Hasegawa T; Himeno H
    J Mol Evol; 1992 Nov; 35(5):436-43. PubMed ID: 1487827
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolution of tRNA recognition systems and tRNA gene sequences.
    Saks ME; Sampson JR
    J Mol Evol; 1995 May; 40(5):509-18. PubMed ID: 7540216
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of tRNA aminoacylation levels by high-throughput sequencing.
    Evans ME; Clark WC; Zheng G; Pan T
    Nucleic Acids Res; 2017 Aug; 45(14):e133. PubMed ID: 28586482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbiome characterization by high-throughput transfer RNA sequencing and modification analysis.
    Schwartz MH; Wang H; Pan JN; Clark WC; Cui S; Eckwahl MJ; Pan DW; Parisien M; Owens SM; Cheng BL; Martinez K; Xu J; Chang EB; Pan T; Eren AM
    Nat Commun; 2018 Dec; 9(1):5353. PubMed ID: 30559359
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identifying the ligated amino acid of archaeal tRNAs based on positions outside the anticodon.
    Galili T; Gingold H; Shaul S; Benjamini Y
    RNA; 2016 Oct; 22(10):1477-91. PubMed ID: 27516383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. YAMAT-seq: an efficient method for high-throughput sequencing of mature transfer RNAs.
    Shigematsu M; Honda S; Loher P; Telonis AG; Rigoutsos I; Kirino Y
    Nucleic Acids Res; 2017 May; 45(9):e70. PubMed ID: 28108659
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mutations in the anticodon stem of tRNA cause accumulation and Met22-dependent decay of pre-tRNA in yeast.
    Payea MJ; Hauke AC; De Zoysa T; Phizicky EM
    RNA; 2020 Jan; 26(1):29-43. PubMed ID: 31619505
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Beyond the Anticodon: tRNA Core Modifications and Their Impact on Structure, Translation and Stress Adaptation.
    Yared MJ; Marcelot A; Barraud P
    Genes (Basel); 2024 Mar; 15(3):. PubMed ID: 38540433
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unique tRNA gene profile suggests paucity of nucleotide modifications in anticodons of a deep-sea symbiotic Spiroplasma.
    Wang Y; Zhu FC; He LS; Danchin A
    Nucleic Acids Res; 2018 Mar; 46(5):2197-2203. PubMed ID: 29390076
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Directed Evolution of Heterologous tRNAs Leads to Reduced Dependence on Post-transcriptional Modifications.
    Baldridge KC; Jora M; Maranhao AC; Quick MM; Addepalli B; Brodbelt JS; Ellington AD; Limbach PA; Contreras LM
    ACS Synth Biol; 2018 May; 7(5):1315-1327. PubMed ID: 29694026
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments.
    Cozen AE; Quartley E; Holmes AD; Hrabeta-Robinson E; Phizicky EM; Lowe TM
    Nat Methods; 2015 Sep; 12(9):879-84. PubMed ID: 26237225
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diversity of tRNA genes in eukaryotes.
    Goodenbour JM; Pan T
    Nucleic Acids Res; 2006; 34(21):6137-46. PubMed ID: 17088292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The tRNA anticodon is recognized by aminoacyl-tRNA-synthetase].
    Kiselev LL; Frolova LIu
    Mol Biol (Mosk); 1989; 23(6):1603-10. PubMed ID: 2698995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. tRNA Modification Profiles and Codon-Decoding Strategies in Methanocaldococcus jannaschii.
    Yu N; Jora M; Solivio B; Thakur P; Acevedo-Rocha CG; Randau L; de Crécy-Lagard V; Addepalli B; Limbach PA
    J Bacteriol; 2019 May; 201(9):. PubMed ID: 30745370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cooperativity between different tRNA modifications and their modification pathways.
    Sokołowski M; Klassen R; Bruch A; Schaffrath R; Glatt S
    Biochim Biophys Acta Gene Regul Mech; 2018 Apr; 1861(4):409-418. PubMed ID: 29222069
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Systematic identification of tRNAome and its dynamics in Lactococcus lactis.
    Puri P; Wetzel C; Saffert P; Gaston KW; Russell SP; Cordero Varela JA; van der Vlies P; Zhang G; Limbach PA; Ignatova Z; Poolman B
    Mol Microbiol; 2014 Sep; 93(5):944-56. PubMed ID: 25040919
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changing identities: tRNA duplication and remolding within animal mitochondrial genomes.
    Rawlings TA; Collins TM; Bieler R
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15700-5. PubMed ID: 14673095
    [TBL] [Abstract][Full Text] [Related]  

  • 39. tRNA-tRNA interactions within cellular ribosomes.
    Smith D; Yarus M
    Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4397-401. PubMed ID: 2499882
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Non-bridging phosphate oxygen atoms within the tRNA anticodon stem-loop are essential for ribosomal A site binding and translocation.
    Phelps SS; Joseph S
    J Mol Biol; 2005 Jun; 349(2):288-301. PubMed ID: 15890196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.