These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32796849)

  • 1. Life histories determine divergent population trends for fishes under climate warming.
    Wang HY; Shen SF; Chen YS; Kiang YK; Heino M
    Nat Commun; 2020 Aug; 11(1):4088. PubMed ID: 32796849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional reorganization of marine fish nurseries under climate warming.
    McLean MJ; Mouillot D; Goascoz N; Schlaich I; Auber A
    Glob Chang Biol; 2019 Feb; 25(2):660-674. PubMed ID: 30367735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Climate-Driven Functional Inversion of Connected Marine Ecosystems.
    McLean M; Mouillot D; Lindegren M; Engelhard G; Villéger S; Marchal P; Brind'Amour A; Auber A
    Curr Biol; 2018 Nov; 28(22):3654-3660.e3. PubMed ID: 30416056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Warming shelf seas drive the subtropicalization of European pelagic fish communities.
    Montero-Serra I; Edwards M; Genner MJ
    Glob Chang Biol; 2015 Jan; 21(1):144-53. PubMed ID: 25230844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demographic plasticity facilitates ecological and economic resilience in a commercially important reef fish.
    Taylor BM; Choat JH; DeMartini EE; Hoey AS; Marshell A; Priest MA; Rhodes KL; Meekan MG
    J Anim Ecol; 2019 Dec; 88(12):1888-1900. PubMed ID: 31429473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem.
    Asch RG
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):E4065-74. PubMed ID: 26159416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life history variation in Barents Sea fish: implications for sensitivity to fishing in a changing environment.
    Wiedmann MA; Primicerio R; Dolgov A; Ottesen CA; Aschan M
    Ecol Evol; 2014 Sep; 4(18):3596-611. PubMed ID: 25478151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local reflects global: Life stage-dependent changes in the phenology of coastal habitat use by North Sea herring.
    Rademaker M; Peck MA; van Leeuwen A
    Glob Chang Biol; 2024 Apr; 30(4):e17285. PubMed ID: 38660809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Habitat specialization in tropical continental shelf demersal fish assemblages.
    Fitzpatrick BM; Harvey ES; Heyward AJ; Twiggs EJ; Colquhoun J
    PLoS One; 2012; 7(6):e39634. PubMed ID: 22761852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opposing life stage-specific effects of ocean warming at source and sink populations of range-shifting coral-reef fishes.
    Monaco CJ; Nagelkerken I; Booth DJ; Figueira WF; Gillanders BM; Schoeman DS; Bradshaw CJA
    J Anim Ecol; 2021 Mar; 90(3):615-627. PubMed ID: 33232514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate change alters stability and species potential interactions in a large marine ecosystem.
    Griffith GP; Strutton PG; Semmens JM
    Glob Chang Biol; 2018 Jan; 24(1):e90-e100. PubMed ID: 28869695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate change exacerbates interspecific interactions in sympatric coastal fishes.
    Milazzo M; Mirto S; Domenici P; Gristina M
    J Anim Ecol; 2013 Mar; 82(2):468-77. PubMed ID: 23039273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Future shock: Ocean acidification and seasonal water temperatures alter the physiology of competing temperate and coral reef fishes.
    Mitchell A; Hayes C; Booth DJ; Nagelkerken I
    Sci Total Environ; 2023 Jul; 883():163684. PubMed ID: 37100135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature increase drives critical slowing down of fish ecosystems.
    Li J; Convertino M
    PLoS One; 2021; 16(10):e0246222. PubMed ID: 34669703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term oceanographic and ecological research in the Western English Channel.
    Southward AJ; Langmead O; Hardman-Mountford NJ; Aiken J; Boalch GT; Dando PR; Genner MJ; Joint I; Kendall MA; Halliday NC; Harris RP; Leaper R; Mieszkowska N; Pingree RD; Richardson AJ; Sims DW; Smith T; Walne AW; Hawkins SJ
    Adv Mar Biol; 2005; 47():1-105. PubMed ID: 15596166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life history optimisation drives latitudinal gradients and responses to global change in marine fishes.
    Álvarez-Noriega M; White CR; Kozłowski J; Day T; Marshall DJ
    PLoS Biol; 2023 May; 21(5):e3002114. PubMed ID: 37228036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature impacts on fish physiology and resource abundance lead to faster growth but smaller fish sizes and yields under warming.
    Lindmark M; Audzijonyte A; Blanchard JL; Gårdmark A
    Glob Chang Biol; 2022 Nov; 28(21):6239-6253. PubMed ID: 35822557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate-driven changes in functional biogeography of Arctic marine fish communities.
    Frainer A; Primicerio R; Kortsch S; Aune M; Dolgov AV; Fossheim M; Aschan MM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12202-12207. PubMed ID: 29087943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual variation and interactions explain food web responses to global warming.
    Gårdmark A; Huss M
    Philos Trans R Soc Lond B Biol Sci; 2020 Dec; 375(1814):20190449. PubMed ID: 33131431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring marine fishes biodiversity: temporal changes in abundance, life history and demography.
    Hutchings JA; Baum JK
    Philos Trans R Soc Lond B Biol Sci; 2005 Feb; 360(1454):315-38. PubMed ID: 15814348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.