BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 32796854)

  • 1. Temperature and salinity, not acidification, predict near-future larval growth and larval habitat suitability of Olympia oysters in the Salish Sea.
    Lawlor JA; Arellano SM
    Sci Rep; 2020 Aug; 10(1):13787. PubMed ID: 32796854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adult exposure to ocean acidification is maladaptive for larvae of the Sydney rock oyster
    Parker LM; O'Connor WA; Byrne M; Coleman RA; Virtue P; Dove M; Gibbs M; Spohr L; Scanes E; Ross PM
    Biol Lett; 2017 Feb; 13(2):. PubMed ID: 28202683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Persistent carry-over effects of planktonic exposure to ocean acidification in the Olympia oyster.
    Hettinger A; Sanford E; Hill TM; Russell AD; Sato KN; Hoey J; Forsch M; Page HN; Gaylord B
    Ecology; 2012 Dec; 93(12):2758-68. PubMed ID: 23431605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactive effects of ocean acidification, elevated temperature, and reduced salinity on early-life stages of the pacific oyster.
    Ko GW; Dineshram R; Campanati C; Chan VB; Havenhand J; Thiyagarajan V
    Environ Sci Technol; 2014 Sep; 48(17):10079-88. PubMed ID: 25014366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Larval carry-over effects from ocean acidification persist in the natural environment.
    Hettinger A; Sanford E; Hill TM; Lenz EA; Russell AD; Gaylord B
    Glob Chang Biol; 2013 Nov; 19(11):3317-26. PubMed ID: 23818389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The stunting effect of a high CO2 ocean on calcification and development in sea urchin larvae, a synthesis from the tropics to the poles.
    Byrne M; Lamare M; Winter D; Dworjanyn SA; Uthicke S
    Philos Trans R Soc Lond B Biol Sci; 2013; 368(1627):20120439. PubMed ID: 23980242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of oyster larval proteome provides new insights into the effects of multiple climate change stressors.
    Dineshram R; Chandramouli K; Ko GW; Zhang H; Qian PY; Ravasi T; Thiyagarajan V
    Glob Chang Biol; 2016 Jun; 22(6):2054-68. PubMed ID: 26990129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming.
    Byrne M; Ho MA; Koleits L; Price C; King CK; Virtue P; Tilbrook B; Lamare M
    Glob Chang Biol; 2013 Jul; 19(7):2264-75. PubMed ID: 23504957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carryover effects of temperature and pCO
    Spencer LH; Venkataraman YR; Crim R; Ryan S; Horwith MJ; Roberts SB
    Ecol Appl; 2020 Apr; 30(3):e02060. PubMed ID: 31863716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population and life-stage specific sensitivities to temperature and salinity stress in barnacles.
    Nasrolahi A; Havenhand J; Wrange AL; Pansch C
    Sci Rep; 2016 Sep; 6():32263. PubMed ID: 27582433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multistressor impacts of warming and acidification of the ocean on marine invertebrates' life histories.
    Byrne M; Przeslawski R
    Integr Comp Biol; 2013 Oct; 53(4):582-96. PubMed ID: 23697893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla.
    Sheppard Brennand H; Soars N; Dworjanyn SA; Davis AR; Byrne M
    PLoS One; 2010 Jun; 5(6):e11372. PubMed ID: 20613879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus.
    Dupont S; Lundve B; Thorndyke M
    J Exp Zool B Mol Dev Evol; 2010 Jul; 314(5):382-9. PubMed ID: 20309996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ocean acidification alters temperature and salinity preferences in larval fish.
    Pistevos JC; Nagelkerken I; Rossi T; Connell SD
    Oecologia; 2017 Feb; 183(2):545-553. PubMed ID: 27888336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ocean acidification increases the vulnerability of native oysters to predation by invasive snails.
    Sanford E; Gaylord B; Hettinger A; Lenz EA; Meyer K; Hill TM
    Proc Biol Sci; 2014 Mar; 281(1778):20132681. PubMed ID: 24430847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Larvae of the coral eating crown-of-thorns starfish, Acanthaster planci in a warmer-high CO2 ocean.
    Kamya PZ; Dworjanyn SA; Hardy N; Mos B; Uthicke S; Byrne M
    Glob Chang Biol; 2014 Nov; 20(11):3365-76. PubMed ID: 24615941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early development of congeneric sea urchins (Heliocidaris) with contrasting life history modes in a warming and high CO2 ocean.
    Hardy NA; Byrne M
    Mar Environ Res; 2014 Dec; 102():78-87. PubMed ID: 25115741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The larvae of congeneric gastropods showed differential responses to the combined effects of ocean acidification, temperature and salinity.
    Zhang H; Cheung SG; Shin PK
    Mar Pollut Bull; 2014 Feb; 79(1-2):39-46. PubMed ID: 24456853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential sensitivity of larvae to ocean acidification in two interacting mollusc species.
    Campanati C; Dupont S; Williams GA; Thiyagarajan V
    Mar Environ Res; 2018 Oct; 141():66-74. PubMed ID: 30115535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Larval Performance of Amphidromous and Landlocked Atyid Shrimp Species in the Genus
    Hamasaki K; Kondo S; Dan S
    Zool Stud; 2021; 60():e45. PubMed ID: 35003339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.