These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 32796863)
21. A review of dry (CO2) reforming of methane over noble metal catalysts. Pakhare D; Spivey J Chem Soc Rev; 2014 Nov; 43(22):7813-37. PubMed ID: 24504089 [TBL] [Abstract][Full Text] [Related]
22. Rational Design of FeNi Bimetal Modified Covalent Organic Frameworks for Photoconversion of Anthropogenic CO Han B; Ou X; Zhong Z; Liang S; Deng H; Lin Z Small; 2020 Sep; 16(38):e2002985. PubMed ID: 32812346 [TBL] [Abstract][Full Text] [Related]
23. Modified Nano-Perovskite Catalysts for the Steam and CO2 Reforming of Methane. Park D; Moon DJ; Bae JW; Kim T J Nanosci Nanotechnol; 2015 Aug; 15(8):5889-92. PubMed ID: 26369166 [TBL] [Abstract][Full Text] [Related]
24. UTSA-16 Growth within 3D-Printed Co-Kaolin Monoliths with High Selectivity for CO Lawson S; Al-Naddaf Q; Krishnamurthy A; Amour MS; Griffin C; Rownaghi AA; Knox JC; Rezaei F ACS Appl Mater Interfaces; 2018 Jun; 10(22):19076-19086. PubMed ID: 29750498 [TBL] [Abstract][Full Text] [Related]
25. In situ NAP-XPS spectroscopy during methane dry reforming on ZrO Rameshan C; Li H; Anic K; Roiaz M; Pramhaas V; Rameshan R; Blume R; Hävecker M; Knudsen J; Knop-Gericke A; Rupprechter G J Phys Condens Matter; 2018 Jul; 30(26):264007. PubMed ID: 29786619 [TBL] [Abstract][Full Text] [Related]
26. Synthesis of liquid fuel via direct hydrogenation of CO He Z; Cui M; Qian Q; Zhang J; Liu H; Han B Proc Natl Acad Sci U S A; 2019 Jun; 116(26):12654-12659. PubMed ID: 31182598 [TBL] [Abstract][Full Text] [Related]
27. A Review on Bimetallic Nickel-Based Catalysts for CO Bian Z; Das S; Wai MH; Hongmanorom P; Kawi S Chemphyschem; 2017 Nov; 18(22):3117-3134. PubMed ID: 28710875 [TBL] [Abstract][Full Text] [Related]
28. One-Step Reforming of CO Wang L; Yi Y; Wu C; Guo H; Tu X Angew Chem Int Ed Engl; 2017 Oct; 56(44):13679-13683. PubMed ID: 28842938 [TBL] [Abstract][Full Text] [Related]
29. Direct Conversion of Syngas to Higher Alcohols via Tandem Integration of Fischer-Tropsch Synthesis and Reductive Hydroformylation. Jeske K; Rösler T; Belleflamme M; Rodenas T; Fischer N; Claeys M; Leitner W; Vorholt AJ; Prieto G Angew Chem Int Ed Engl; 2022 Aug; 61(31):e202201004. PubMed ID: 35491237 [TBL] [Abstract][Full Text] [Related]
30. Reforming sewage sludge pyrolysis volatile with Fe-embedded char: Minimization of liquid product yield. Yu G; Chen D; Arena U; Huang Z; Dai X Waste Manag; 2018 Mar; 73():464-475. PubMed ID: 28803146 [TBL] [Abstract][Full Text] [Related]
31. Electrochemical Conversion of CO He Q; Liu D; Lee JH; Liu Y; Xie Z; Hwang S; Kattel S; Song L; Chen JG Angew Chem Int Ed Engl; 2020 Feb; 59(8):3033-3037. PubMed ID: 31826317 [TBL] [Abstract][Full Text] [Related]
32. Ab initio investigation of the atomistic descriptors in the activation of small molecules on 3d transition-metal 13-atom clusters: The example of H Ocampo-Restrepo VK; Zibordi-Besse L; Da Silva JLF J Chem Phys; 2019 Dec; 151(21):214301. PubMed ID: 31822101 [TBL] [Abstract][Full Text] [Related]
33. Recent advances in the routes and catalysts for ethanol synthesis from syngas. Liu G; Yang G; Peng X; Wu J; Tsubaki N Chem Soc Rev; 2022 Jul; 51(13):5606-5659. PubMed ID: 35705080 [TBL] [Abstract][Full Text] [Related]
35. Catalytic conversion of high-GWP gases N Saikia P; Gogoi C; Kalita PJ; Goswamee RL Environ Sci Pollut Res Int; 2020 Jul; 27(20):24939-24953. PubMed ID: 32342412 [TBL] [Abstract][Full Text] [Related]
36. Molybdenum Carbide: Controlling the Geometric and Electronic Structure of Noble Metals for the Activation of O-H and C-H Bonds. Deng Y; Ge Y; Xu M; Yu Q; Xiao D; Yao S; Ma D Acc Chem Res; 2019 Dec; 52(12):3372-3383. PubMed ID: 31411856 [TBL] [Abstract][Full Text] [Related]
37. Energy-efficient syngas production through catalytic oxy-methane reforming reactions. Choudhary TV; Choudhary VR Angew Chem Int Ed Engl; 2008; 47(10):1828-47. PubMed ID: 18188848 [TBL] [Abstract][Full Text] [Related]
38. Evidence of highly active cobalt oxide catalyst for the Fischer-Tropsch synthesis and CO2 hydrogenation. Melaet G; Ralston WT; Li CS; Alayoglu S; An K; Musselwhite N; Kalkan B; Somorjai GA J Am Chem Soc; 2014 Feb; 136(6):2260-3. PubMed ID: 24460136 [TBL] [Abstract][Full Text] [Related]
39. Insights into the Diffusion Behaviors of Water over Hydrophilic/Hydrophobic Catalysts During the Conversion of Syngas to High-Quality Gasoline. Xu Y; Liang H; Li R; Zhang Z; Qin C; Xu D; Fan H; Hou B; Wang J; Gu XK; Ding M Angew Chem Int Ed Engl; 2023 Sep; 62(37):e202306786. PubMed ID: 37470313 [TBL] [Abstract][Full Text] [Related]
40. Bimetallic Metal-Organic Framework-Derived Hybrid Nanostructures as High-Performance Catalysts for Methane Dry Reforming. Liang TY; Senthil Raja D; Chin KC; Huang CL; Sethupathi SA; Leong LK; Tsai DH; Lu SY ACS Appl Mater Interfaces; 2020 Apr; 12(13):15183-15193. PubMed ID: 32167283 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]