BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32796921)

  • 1. Genetic alterations in the 3q26.31-32 locus confer an aggressive prostate cancer phenotype.
    Simpson BS; Camacho N; Luxton HJ; Pye H; Finn R; Heavey S; Pitt J; Moore CM; Whitaker HC
    Commun Biol; 2020 Aug; 3(1):440. PubMed ID: 32796921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The chromosome 3q26 OncCassette: A multigenic driver of human cancer.
    Fields AP; Justilien V; Murray NR
    Adv Biol Regul; 2016 Jan; 60():47-63. PubMed ID: 26754874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two susceptibility loci identified for prostate cancer aggressiveness.
    Berndt SI; Wang Z; Yeager M; Alavanja MC; Albanes D; Amundadottir L; Andriole G; Beane Freeman L; Campa D; Cancel-Tassin G; Canzian F; Cornu JN; Cussenot O; Diver WR; Gapstur SM; Grönberg H; Haiman CA; Henderson B; Hutchinson A; Hunter DJ; Key TJ; Kolb S; Koutros S; Kraft P; Le Marchand L; Lindström S; Machiela MJ; Ostrander EA; Riboli E; Schumacher F; Siddiq A; Stanford JL; Stevens VL; Travis RC; Tsilidis KK; Virtamo J; Weinstein S; Wilkund F; Xu J; Lilly Zheng S; Yu K; Wheeler W; Zhang H; ; Sampson J; Black A; Jacobs K; Hoover RN; Tucker M; Chanock SJ
    Nat Commun; 2015 May; 6():6889. PubMed ID: 25939597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cribriform and intraductal prostate cancer are associated with increased genomic instability and distinct genomic alterations.
    Böttcher R; Kweldam CF; Livingstone J; Lalonde E; Yamaguchi TN; Huang V; Yousif F; Fraser M; Bristow RG; van der Kwast T; Boutros PC; Jenster G; van Leenders GJLH
    BMC Cancer; 2018 Jan; 18(1):8. PubMed ID: 29295717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrative analysis of genomic aberrations associated with prostate cancer progression.
    Kim JH; Dhanasekaran SM; Mehra R; Tomlins SA; Gu W; Yu J; Kumar-Sinha C; Cao X; Dash A; Wang L; Ghosh D; Shedden K; Montie JE; Rubin MA; Pienta KJ; Shah RB; Chinnaiyan AM
    Cancer Res; 2007 Sep; 67(17):8229-39. PubMed ID: 17804737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copy number alterations in prostate tumors and disease aggressiveness.
    Cheng I; Levin AM; Tai YC; Plummer S; Chen GK; Neslund-Dudas C; Casey G; Rybicki BA; Witte JS
    Genes Chromosomes Cancer; 2012 Jan; 51(1):66-76. PubMed ID: 21965145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide association study of germline copy number variations reveals an association with prostate cancer aggressiveness.
    Brezina S; Feigl M; Gumpenberger T; Staudinger R; Baierl A; Gsur A
    Mutagenesis; 2020 Jul; 35(3):283-290. PubMed ID: 32255470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of new DNA amplification loci in prostate cancer by comparative genomic hybridization.
    El Gedaily A; Bubendorf L; Willi N; Fu W; Richter J; Moch H; Mihatsch MJ; Sauter G; Gasser TC
    Prostate; 2001 Feb; 46(3):184-90. PubMed ID: 11170146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic and expression analysis of the 3q25-q26 amplification unit reveals TLOC1/SEC62 as a probable target gene in prostate cancer.
    Jung V; Kindich R; Kamradt J; Jung M; Müller M; Schulz WA; Engers R; Unteregger G; Stöckle M; Zimmermann R; Wullich B
    Mol Cancer Res; 2006 Mar; 4(3):169-76. PubMed ID: 16547154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple specific pattern of chromosomal aberrations at early stages of head and neck squamous cell carcinomas: PIK3CA but not p63 gene as a likely target of 3q26-qter gains.
    Redon R; Muller D; Caulee K; Wanherdrick K; Abecassis J; du Manoir S
    Cancer Res; 2001 May; 61(10):4122-9. PubMed ID: 11358835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide copy number analysis reveals candidate gene loci that confer susceptibility to high-grade prostate cancer.
    Poniah P; Mohd Zain S; Abdul Razack AH; Kuppusamy S; Karuppayah S; Sian Eng H; Mohamed Z
    Urol Oncol; 2017 Sep; 35(9):545.e1-545.e11. PubMed ID: 28527622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic changes in stage pT2N0 prostate cancer studied by comparative genomic hybridization.
    Wolter H; Gottfried HW; Mattfeldt T
    BJU Int; 2002 Feb; 89(3):310-6. PubMed ID: 11856117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aneusomy of chromosomes 7, 8, and 17 and amplification of HER-2/neu and epidermal growth factor receptor in Gleason score 7 prostate carcinoma: a differential fluorescent in situ hybridization study of Gleason pattern 3 and 4 using tissue microarray.
    Skacel M; Ormsby AH; Pettay JD; Tsiftsakis EK; Liou LS; Klein EA; Levin HS; Zippe CD; Tubbs RR
    Hum Pathol; 2001 Dec; 32(12):1392-7. PubMed ID: 11774175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel amplification unit at chromosome 3q25-q27 in human prostate cancer.
    Sattler HP; Lensch R; Rohde V; Zimmer E; Meese E; Bonkhoff H; Retz M; Zwergel T; Bex A; Stoeckle M; Wullich B
    Prostate; 2000 Nov; 45(3):207-15. PubMed ID: 11074522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modifier locus mapping of a transgenic F2 mouse population identifies CCDC115 as a novel aggressive prostate cancer modifier gene in humans.
    Winter JM; Curry NL; Gildea DM; Williams KA; Lee M; Hu Y; Crawford NPS
    BMC Genomics; 2018 Jun; 19(1):450. PubMed ID: 29890952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic Analysis of Localized High-Risk Prostate Cancer Circulating Tumor Cells at the Single-Cell Level.
    Rangel-Pozzo A; Liu S; Wajnberg G; Wang X; Ouellette RJ; Hicks GG; Drachenberg D; Mai S
    Cells; 2020 Aug; 9(8):. PubMed ID: 32784507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recurrent deletion of 3p13 targets multiple tumour suppressor genes and defines a distinct subgroup of aggressive ERG fusion-positive prostate cancers.
    Krohn A; Seidel A; Burkhardt L; Bachmann F; Mader M; Grupp K; Eichenauer T; Becker A; Adam M; Graefen M; Huland H; Kurtz S; Steurer S; Tsourlakis MC; Minner S; Michl U; Schlomm T; Sauter G; Simon R; Sirma H
    J Pathol; 2013 Sep; 231(1):130-41. PubMed ID: 23794398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic changes in clinically organ-confined prostate cancer by comparative genomic hybridization.
    Fu W; Bubendorf L; Willi N; Moch H; Mihatsch MJ; Sauter G; Gasser TC
    Urology; 2000 Nov; 56(5):880-5. PubMed ID: 11068328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gains, losses, and amplifications of genomic materials in primary gastric cancers analyzed by comparative genomic hybridization.
    Sakakura C; Mori T; Sakabe T; Ariyama Y; Shinomiya T; Date K; Hagiwara A; Yamaguchi T; Takahashi T; Nakamura Y; Abe T; Inazawa J
    Genes Chromosomes Cancer; 1999 Apr; 24(4):299-305. PubMed ID: 10092127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copy number variation in ACHE/EPHB4 (7q22) and in BCHE/MME (3q26) genes in sporadic breast cancer.
    Boberg DR; Batistela MS; Pecharki M; Ribeiro EM; Cavalli IJ; Lima RS; Urban CA; Furtado-Alle L; Souza RL
    Chem Biol Interact; 2013 Mar; 203(1):344-7. PubMed ID: 23063927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.