BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32796921)

  • 21. Gene expression profiles of CMS2-epithelial/canonical colorectal cancers are largely driven by DNA copy number gains.
    Berg KCG; Sveen A; Høland M; Alagaratnam S; Berg M; Danielsen SA; Nesbakken A; Søreide K; Lothe RA
    Oncogene; 2019 Aug; 38(33):6109-6122. PubMed ID: 31308487
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasma genetic and genomic abnormalities predict treatment response and clinical outcome in advanced prostate cancer.
    Xia S; Kohli M; Du M; Dittmar RL; Lee A; Nandy D; Yuan T; Guo Y; Wang Y; Tschannen MR; Worthey E; Jacob H; See W; Kilari D; Wang X; Hovey RL; Huang CC; Wang L
    Oncotarget; 2015 Jun; 6(18):16411-21. PubMed ID: 25915538
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Breast and prostate cancers harbor common somatic copy number alterations that consistently differ by race and are associated with survival.
    Chen Y; Sadasivan SM; She R; Datta I; Taneja K; Chitale D; Gupta N; Davis MB; Newman LA; Rogers CG; Paris PL; Li J; Rybicki BA; Levin AM
    BMC Med Genomics; 2020 Aug; 13(1):116. PubMed ID: 32819446
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-wide analysis of recurrent copy-number alterations and copy-neutral loss of heterozygosity in head and neck squamous cell carcinoma.
    Marescalco MS; Capizzi C; Condorelli DF; Barresi V
    J Oral Pathol Med; 2014 Jan; 43(1):20-7. PubMed ID: 23750501
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In-Silico Integration Approach to Identify a Key miRNA Regulating a Gene Network in Aggressive Prostate Cancer.
    Cava C; Bertoli G; Colaprico A; Bontempi G; Mauri G; Castiglioni I
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29562723
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic profile of ductal adenocarcinoma of the prostate.
    Seipel AH; Whitington T; Delahunt B; Samaratunga H; Mayrhofer M; Wiklund P; Grönberg H; Lindberg J; Egevad L
    Hum Pathol; 2017 Nov; 69():1-7. PubMed ID: 28457729
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recurrent copy number alterations in prostate cancer: an in silico meta-analysis of publicly available genomic data.
    Williams JL; Greer PA; Squire JA
    Cancer Genet; 2014; 207(10-12):474-88. PubMed ID: 25434580
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SOX2 identified as a target gene for the amplification at 3q26 that is frequently detected in esophageal squamous cell carcinoma.
    Gen Y; Yasui K; Zen Y; Zen K; Dohi O; Endo M; Tsuji K; Wakabayashi N; Itoh Y; Naito Y; Taniwaki M; Nakanuma Y; Okanoue T; Yoshikawa T
    Cancer Genet Cytogenet; 2010 Oct; 202(2):82-93. PubMed ID: 20875870
    [TBL] [Abstract][Full Text] [Related]  

  • 29. EVI1, a target gene for amplification at 3q26, antagonizes transforming growth factor-β-mediated growth inhibition in hepatocellular carcinoma.
    Yasui K; Konishi C; Gen Y; Endo M; Dohi O; Tomie A; Kitaichi T; Yamada N; Iwai N; Nishikawa T; Yamaguchi K; Moriguchi M; Sumida Y; Mitsuyoshi H; Tanaka S; Arii S; Itoh Y
    Cancer Sci; 2015 Jul; 106(7):929-37. PubMed ID: 25959919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Association of self-identified race and genetic ancestry with the immunogenomic landscape of primary prostate cancer.
    Vidotto T; Imada EL; Faisal F; Murali S; Mendes AA; Kaur H; Zheng S; Xu J; Schaeffer EM; Isaacs WB; Sfanos KS; Marchionni L; Lotan TL
    JCI Insight; 2023 Feb; 8(3):. PubMed ID: 36752203
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative genomic hybridization reveals DNA copy number gains to frequently occur in human prostate cancer.
    Sattler HP; Rohde V; Bonkhoff H; Zwergel T; Wullich B
    Prostate; 1999 May; 39(2):79-86. PubMed ID: 10221562
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic aberrations in prostate carcinoma detected by comparative genomic hybridization and microsatellite analysis: association with progression and angiogenesis.
    Strohmeyer DM; Berger AP; Moore DH; Bartsch G; Klocker H; Carroll PR; Loening SA; Jensen RH
    Prostate; 2004 Apr; 59(1):43-58. PubMed ID: 14991865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interphase cytogenetics of prostatic tumor progression: specific chromosomal abnormalities are involved in metastasis to the bone.
    Alers JC; Krijtenburg PJ; Rosenberg C; Hop WC; Verkerk AM; Schröder FH; van der Kwast TH; Bosman FT; van Dekken H
    Lab Invest; 1997 Nov; 77(5):437-48. PubMed ID: 9389787
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aneuploidy drives lethal progression in prostate cancer.
    Stopsack KH; Whittaker CA; Gerke TA; Loda M; Kantoff PW; Mucci LA; Amon A
    Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11390-11395. PubMed ID: 31085648
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intraductal carcinoma of the prostate in the absence of high-grade invasive carcinoma represents a molecularly distinct type of in situ carcinoma enriched with oncogenic driver mutations.
    Khani F; Wobker SE; Hicks JL; Robinson BD; Barbieri CE; De Marzo AM; Epstein JI; Pritchard CC; Lotan TL
    J Pathol; 2019 Sep; 249(1):79-89. PubMed ID: 30993692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying actionable targets through integrative analyses of GEM model and human prostate cancer genomic profiling.
    Wanjala J; Taylor BS; Chapinski C; Hieronymus H; Wongvipat J; Chen Y; Nanjangud GJ; Schultz N; Xie Y; Liu S; Lu W; Yang Q; Sander C; Chen Z; Sawyers CL; Carver BS
    Mol Cancer Ther; 2015 Jan; 14(1):278-88. PubMed ID: 25381262
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated genomic, transcriptomic, and RNA-interference analysis of genes in somatic copy number gains in pancreatic ductal adenocarcinoma.
    Samuel N; Sayad A; Wilson G; Lemire M; Brown KR; Muthuswamy L; Hudson TJ; Moffat J
    Pancreas; 2013 Aug; 42(6):1016-26. PubMed ID: 23851435
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering targeted chromosomal amplifications in human breast epithelial cells.
    Springer S; Yi KH; Park J; Rajpurohit A; Price AJ; Lauring J
    Breast Cancer Res Treat; 2015 Jul; 152(2):313-21. PubMed ID: 26099605
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinical significance of alterations of chromosome 8 detected by fluorescence in situ hybridization analysis in pathologic organ-confined prostate cancer.
    Tsuchiya N; Slezak JM; Lieber MM; Bergstralh EJ; Jenkins RB
    Genes Chromosomes Cancer; 2002 Aug; 34(4):363-71. PubMed ID: 12112525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative genomic hybridization detects frequent overrepresentation of chromosomal material from 3q26, 8q24, and 20q13 in human ovarian carcinomas.
    Sonoda G; Palazzo J; du Manoir S; Godwin AK; Feder M; Yakushiji M; Testa JR
    Genes Chromosomes Cancer; 1997 Dec; 20(4):320-8. PubMed ID: 9408747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.