These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32796960)

  • 1. Tunable light absorption of graphene using topological interface states.
    Lin YC; Chou SH; Hsueh WJ
    Opt Lett; 2020 Aug; 45(16):4369-4372. PubMed ID: 32796960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance.
    Jiang X; Wang T; Xiao S; Yan X; Cheng L
    Opt Express; 2017 Oct; 25(22):27028-27036. PubMed ID: 29092184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-channel perfect absorber based on a one-dimensional topological photonic crystal heterostructure with graphene.
    Wang X; Liang Y; Wu L; Guo J; Dai X; Xiang Y
    Opt Lett; 2018 Sep; 43(17):4256-4259. PubMed ID: 30160765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photonic crystal for graphene plasmons.
    Xiong L; Forsythe C; Jung M; McLeod AS; Sunku SS; Shao YM; Ni GX; Sternbach AJ; Liu S; Edgar JH; Mele EJ; Fogler MM; Shvets G; Dean CR; Basov DN
    Nat Commun; 2019 Oct; 10(1):4780. PubMed ID: 31636265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene-tuned EIT-like effect in photonic multilayers for actively controlled light absorption of topological insulators.
    Lu H; Li Y; Yue Z; Mao D; Zhao J
    Opt Express; 2020 Oct; 28(21):31893-31903. PubMed ID: 33115153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconfigurable and tunable flat graphene photonic crystal circuits.
    Chen ZH; Tan QL; Lao J; Liang Y; Huang XG
    Nanoscale; 2015 Jul; 7(25):10912-7. PubMed ID: 26061901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of propagating graphene plasmons excitation for tunable infrared photonic devices.
    Tang L; Wei W; Wei X; Nong J; Du C; Shi H
    Opt Express; 2018 Feb; 26(3):3709-3722. PubMed ID: 29401898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons.
    Lu H; Gan X; Jia B; Mao D; Zhao J
    Opt Lett; 2016 Oct; 41(20):4743-4746. PubMed ID: 28005882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of graphene Faraday rotation in the one-dimensional topological photonic crystals.
    Liang Y; Xiang Y; Dai X
    Opt Express; 2020 Aug; 28(17):24560-24567. PubMed ID: 32906995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamically tunable interface states in 1D graphene-embedded photonic crystal heterostructure.
    Huang Z; Li S; Liu X; Zhao D; Ye L; Zhu X; Zang J
    J Phys Condens Matter; 2018 Mar; 30(9):095702. PubMed ID: 29350625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards Perfect Absorption of Single Layer CVD Graphene in an Optical Resonant Cavity: Challenges and Experimental Achievements.
    Nematpour A; Grilli ML; Lancellotti L; Lisi N
    Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust high-Q filter with complete transmission by conjugated topological photonic crystals.
    Lin YC; Chou SH; Hsueh WJ
    Sci Rep; 2020 Apr; 10(1):7040. PubMed ID: 32341460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable light trapping and absorption enhancement with graphene ring arrays.
    Xiao S; Wang T; Liu Y; Xu C; Han X; Yan X
    Phys Chem Chem Phys; 2016 Sep; 18(38):26661-26669. PubMed ID: 27722336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement and manipulation of group delay based on topological edge state in one-dimensional photonic crystal with graphene.
    Xu J; Fu X; Peng Y; Wang S; Zheng Z; Zou X; Qian S; Jiang L
    Opt Express; 2021 Sep; 29(19):30348-30356. PubMed ID: 34614760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-infrared absorption-induced switching effect via guided mode resonances in a graphene-based metamaterial.
    Qing YM; Ma HF; Ren YZ; Yu S; Cui TJ
    Opt Express; 2019 Feb; 27(4):5253-5263. PubMed ID: 30876126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrically and Optically Tunable Responses in Graphene/Transition-Metal-Dichalcogenide Heterostructures.
    Zhao M; Song P; Teng J
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):44102-44108. PubMed ID: 30479118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene-Based Perfect Absorption Structures in the Visible to Terahertz Band and Their Optoelectronics Applications.
    Guo C; Zhang J; Xu W; Liu K; Yuan X; Qin S; Zhu Z
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30545038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient narrow-band absorption of a graphene-based Fabry-Perot structure at telecommunication wavelengths.
    Zhou K; Cheng Q; Song J; Lu L; Luo Z
    Opt Lett; 2019 Jul; 44(14):3430-3433. PubMed ID: 31305540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic topological edge states in ring-structure gate graphene.
    Song Z; Liu H; Huang N; Wang Z
    Appl Opt; 2018 Oct; 57(29):8503-8507. PubMed ID: 30461915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-band tunable narrowband near-infrared light trapping control based on a hybrid grating-based Fabry-Perot structure.
    Zhou K; Cheng Q; Lu L; Li B; Song J; Luo Z
    Opt Express; 2020 Jan; 28(2):1647-1656. PubMed ID: 32121872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.