These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32796987)

  • 1. Laser induced damage in coatings for cryogenic Yb:YAG active mirror amplifiers.
    Wang H; Meadows AR; Jankowska E; Randel E; Reagan BA; Rocca JJ; Menoni CS
    Opt Lett; 2020 Aug; 45(16):4476-4479. PubMed ID: 32796987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of annealing on properties and performance of HfO
    Falmbigl M; Godin K; George J; Mühlig C; Rubin B
    Opt Express; 2022 Apr; 30(8):12326-12336. PubMed ID: 35472870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of coating thickness on laser-induced damage characteristics of anti-reflection coatings irradiated by 1064  nm nanosecond laser pulses.
    Song Z; Cheng X; Ma H; Zhang J; Ma B; Jiao H; Wang Z
    Appl Opt; 2017 Feb; 56(4):C188-C192. PubMed ID: 28158072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femtosecond laser damage resistance of oxide and mixture oxide optical coatings.
    Mangote B; Gallais L; Commandré M; Mende M; Jensen L; Ehlers H; Jupé M; Ristau D; Melninkaitis A; Mirauskas J; Sirutkaitis V; Kičas S; Tolenis T; Drazdys R
    Opt Lett; 2012 May; 37(9):1478-80. PubMed ID: 22555710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Annealing effects on microstructure and laser-induced damage threshold of HfO
    Jena S; Tokas RB; Rao KD; Thakur S; Sahoo NK
    Appl Opt; 2016 Aug; 55(22):6108-14. PubMed ID: 27505395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryogenic Yb:YAG composite-thin-disk for high energy and average power amplifiers.
    Zapata LE; Lin H; Calendron AL; Cankaya H; Hemmer M; Reichert F; Huang WR; Granados E; Hong KH; Kärtner FX
    Opt Lett; 2015 Jun; 40(11):2610-3. PubMed ID: 26030570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser-induced damage behaviors of antireflective coatings at cryogenic condition.
    Wang H; Zhang W; He H
    Appl Opt; 2012 Dec; 51(36):8687-92. PubMed ID: 23262610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies to increase laser damage performance of Ta
    Schiltz D; Patel D; Baumgarten C; Reagan BA; Rocca JJ; Menoni CS
    Appl Opt; 2017 Feb; 56(4):C136-C139. PubMed ID: 28158069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zig-zag active-mirror laser with cryogenic Yb3+:YAG/YAG composite ceramics.
    Furuse H; Kawanaka J; Miyanaga N; Saiki T; Imasaki K; Fujita M; Takeshita K; Ishii S; Izawa Y
    Opt Express; 2011 Jan; 19(3):2448-55. PubMed ID: 21369064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative investigation of laser-induced damage fatigue in HfO
    Smalakys L; Drobužaitė E; Momgaudis B; Grigutis R; Melninkaitis A
    Opt Express; 2020 Aug; 28(17):25335-25345. PubMed ID: 32907056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-energy, kHz-repetition-rate, ps cryogenic Yb:YAG chirped-pulse amplifier.
    Hong KH; Gopinath JT; Rand D; Siddiqui AM; Huang SW; Li E; Eggleton BJ; Hybl JD; Fan TY; Kärtner FX
    Opt Lett; 2010 Jun; 35(11):1752-4. PubMed ID: 20517404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High beam quality and high peak power Yb:YAG/Cr:YAG microchip laser.
    Guo X; Tokita S; Kawanaka J
    Opt Express; 2019 Jan; 27(1):45-54. PubMed ID: 30645357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser-induced damage threshold of ZnGeP
    Kinyaevskiy IO; Danilov PA; Kudryashov SI; Pakholchuk PP; Ostrikov SA; Yudin NN; Zinovev MM; Podzyvalov SN; Andreev YM
    Appl Opt; 2023 Jan; 62(1):16-20. PubMed ID: 36606843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics.
    Furuse H; Kawanaka J; Takeshita K; Miyanaga N; Saiki T; Imasaki K; Fujita M; Ishii S
    Opt Lett; 2009 Nov; 34(21):3439-41. PubMed ID: 19881620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ 3-D temperature mapping of high average power cryogenic laser amplifiers.
    Chi H; Dehne KA; Baumgarten CM; Wang H; Yin L; Reagan BA; Rocca JJ
    Opt Express; 2018 Mar; 26(5):5240-5252. PubMed ID: 29529729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stripping of PFA Fluoropolymer Coatings Using a Nd:YAG Laser (Q-Switch) and an Yb Fiber Laser (CW).
    Guerrero-Vaca G; Rodríguez-Alabanda Ó; Romero PE; Soriano C; Molero E; Lambarri J
    Polymers (Basel); 2019 Oct; 11(11):. PubMed ID: 31652922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amplification characteristics of a cryogenic Yb³⁺:YAG total-reflection active-mirror laser.
    Furuse H; Sakurai T; Chosrowjan H; Kawanaka J; Miyanaga N; Fujita M; Ishii S; Izawa Y
    Appl Opt; 2014 Mar; 53(9):1964-9. PubMed ID: 24663477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser damage properties of broadband low-dispersion mirrors in sub-nanosecond laser pulse.
    Zhang J; Bu X; Jiao H; Ma B; Cheng X; Wang Z
    Opt Express; 2017 Jan; 25(1):305-312. PubMed ID: 28085824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large area ion beam sputtered dielectric ultrafast mirrors for petawatt laser beamlines.
    Willemsen T; Chaulagain U; Havlíčková I; Borneis S; Ebert W; Ehlers H; Gauch M; Groß T; Kramer D; Laštovička T; Nejdl J; Rus B; Schrader K; Tolenis T; Vaněk F; Velpula PK; Weber S
    Opt Express; 2022 Feb; 30(4):6129-6141. PubMed ID: 35209556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser induced damage threshold of GaSe with antireflection microstructures at a wavelength of 5 µm.
    Kharitonova P; Isaenko L; Doroshenko M; Smetanin S; Kochukov Y; Lobanov S; Yelisseyev A; Goloshumova A; Bushunov A; Teslenko A; Lazarev V; Tarabrin M
    Opt Express; 2024 Feb; 32(5):7710-7719. PubMed ID: 38439446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.