BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32797030)

  • 1. Approaches for deep-ultraviolet surface plasmon resonance sensors.
    Moreira C; Wang Y; Blair S; Chadwick E; Lee JY; Oliveira L; Lima A; Cruz R
    Opt Lett; 2020 Aug; 45(16):4642-4645. PubMed ID: 32797030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films.
    Tanabe I; Tanaka YY; Watari K; Hanulia T; Goto T; Inami W; Kawata Y; Ozaki Y
    Sci Rep; 2017 Jul; 7(1):5934. PubMed ID: 28725007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic study on the sensitivity enhancement in graphene plasmonic sensors based on layer-by-layer self-assembled graphene oxide multilayers and their reduced analogues.
    Chung K; Rani A; Lee JE; Kim JE; Kim Y; Yang H; Kim SO; Kim D; Kim DH
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):144-51. PubMed ID: 25555067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold-aluminum-based surface plasmon resonance sensor with a high quality factor and figure of merit for the detection of hemoglobin.
    Bijalwan A; Rastogi V
    Appl Opt; 2018 Nov; 57(31):9230-9237. PubMed ID: 30461962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical waveguide sensor based on a porous anodic alumina/aluminum multilayer film.
    Yamaguchi A; Hotta K; Teramae N
    Anal Chem; 2009 Jan; 81(1):105-11. PubMed ID: 19049367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Localized Surface Plasmon Resonance Sensor Using Double-Metal-Complex Nanostructures and a Review of Recent Approaches.
    Ahn H; Song H; Choi JR; Kim K
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29301238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bloch Surface Wave Resonance Based Sensors as an Alternative to Surface Plasmon Resonance Sensors.
    Gryga M; Ciprian D; Hlubina P
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32911784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct optical measurements of far- and deep-ultraviolet surface plasmon resonance with different refractive indices.
    Tanabe I; Tanaka YY; Ryoki T; Watari K; Goto T; Kikawada M; Inami W; Kawata Y; Ozaki Y
    Opt Express; 2016 Sep; 24(19):21886-96. PubMed ID: 27661924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-layer graphene-coated gold chip for electrochemical surface plasmon resonance study.
    Mei Y; Zhong C; Li L; Nong J; Wei W; Hu W
    Anal Bioanal Chem; 2019 Jul; 411(19):4577-4585. PubMed ID: 30450508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Surface Plasmon Resonance Wavelength Shifts by Molecular Electronic Absorption in Far- and Deep-Ultraviolet Regions.
    Tanabe I; Tanaka YY; Watari K; Inami W; Kawata Y; Ozaki Y
    Sci Rep; 2020 Jun; 10(1):9938. PubMed ID: 32555405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photothermal effects induced by surface plasmon resonance at graphene/gold nanointerfaces: A multiscale modeling study.
    Pang J; Tao L; Lu X; Yang Q; Pachauri V; Wang Z; Ingebrandt S; Chen X
    Biosens Bioelectron; 2019 Feb; 126():470-477. PubMed ID: 30472444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitive Aluminum SPR Sensors Prepared by Thermal Evaporation Deposition.
    He C; Li Y; Yang Y; Fan H; Li D; Han X
    ACS Omega; 2023 Nov; 8(45):43188-43196. PubMed ID: 38024768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Far- and Deep-Ultraviolet Surface Plasmon Resonance Sensor.
    Tanabe I; Tanaka YY
    Chem Rec; 2019 Jul; 19(7):1210-1219. PubMed ID: 30256528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces.
    Szunerits S; Maalouli N; Wijaya E; Vilcot JP; Boukherroub R
    Anal Bioanal Chem; 2013 Feb; 405(5):1435-43. PubMed ID: 23314618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Sensitive and Selective Sensor Chips with Graphene-Oxide Linking Layer.
    Stebunov YV; Aftenieva OA; Arsenin AV; Volkov VS
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21727-34. PubMed ID: 26358000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity of transmission surface plasmon resonance (T-SPR) spectroscopy: self-assembled multilayers on evaporated gold island films.
    Doron-Mor I; Cohen H; Barkay Z; Shanzer A; Vaskevich A; Rubinstein I
    Chemistry; 2005 Sep; 11(19):5555-62. PubMed ID: 16007692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared.
    Jha R; Sharma AK
    Opt Lett; 2009 Mar; 34(6):749-51. PubMed ID: 19282920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon-Enhanced Autofluorescence Imaging of Organelles in Label-Free Cells by Deep-Ultraviolet Excitation.
    Kikawada M; Ono A; Inami W; Kawata Y
    Anal Chem; 2016 Jan; 88(2):1407-11. PubMed ID: 26669415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A.
    Huang CF; Yao GH; Liang RP; Qiu JD
    Biosens Bioelectron; 2013 Dec; 50():305-10. PubMed ID: 23876541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Giant Goos-Hänchen Shifts in Au-ITO-TMDCs-Graphene Heterostructure and Its Potential for High Performance Sensor.
    Han L; Pan J; Wu C; Li K; Ding H; Ji Q; Yang M; Wang J; Zhang H; Huang T
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.