These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 32797179)

  • 1. Unsupervised protein embeddings outperform hand-crafted sequence and structure features at predicting molecular function.
    Villegas-Morcillo A; Makrodimitris S; van Ham RCHJ; Gomez AM; Sanchez V; Reinders MJT
    Bioinformatics; 2021 Apr; 37(2):162-170. PubMed ID: 32797179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding.
    Min X; Zeng W; Chen N; Chen T; Jiang R
    Bioinformatics; 2017 Jul; 33(14):i92-i101. PubMed ID: 28881969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HN-PPISP: a hybrid network based on MLP-Mixer for protein-protein interaction site prediction.
    Kang Y; Xu Y; Wang X; Pu B; Yang X; Rao Y; Chen J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36403092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepAffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks.
    Karimi M; Wu D; Wang Z; Shen Y
    Bioinformatics; 2019 Sep; 35(18):3329-3338. PubMed ID: 30768156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PhosIDN: an integrated deep neural network for improving protein phosphorylation site prediction by combining sequence and protein-protein interaction information.
    Yang H; Wang M; Liu X; Zhao XM; Li A
    Bioinformatics; 2021 Dec; 37(24):4668-4676. PubMed ID: 34320631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the BERT model on nucleotide sequences with non-standard pre-training and evaluation of different k-mer embeddings.
    Zhang YZ; Bai Z; Imoto S
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37815839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MG-BERT: leveraging unsupervised atomic representation learning for molecular property prediction.
    Zhang XC; Wu CK; Yang ZJ; Wu ZX; Yi JC; Hsieh CY; Hou TJ; Cao DS
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33951729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-supervised driven consistency training for annotation efficient histopathology image analysis.
    Srinidhi CL; Kim SW; Chen FD; Martel AL
    Med Image Anal; 2022 Jan; 75():102256. PubMed ID: 34717189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ProteinBERT: a universal deep-learning model of protein sequence and function.
    Brandes N; Ofer D; Peleg Y; Rappoport N; Linial M
    Bioinformatics; 2022 Apr; 38(8):2102-2110. PubMed ID: 35020807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep neural networks for inferring binding sites of RNA-binding proteins by using distributed representations of RNA primary sequence and secondary structure.
    Deng L; Liu Y; Shi Y; Zhang W; Yang C; Liu H
    BMC Genomics; 2020 Dec; 21(Suppl 13):866. PubMed ID: 33334313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pre-training graph neural networks for link prediction in biomedical networks.
    Long Y; Wu M; Liu Y; Fang Y; Kwoh CK; Chen J; Luo J; Li X
    Bioinformatics; 2022 Apr; 38(8):2254-2262. PubMed ID: 35171981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-protein interaction site prediction through combining local and global features with deep neural networks.
    Zeng M; Zhang F; Wu FX; Li Y; Wang J; Li M
    Bioinformatics; 2020 Feb; 36(4):1114-1120. PubMed ID: 31593229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learned protein embeddings for machine learning.
    Yang KK; Wu Z; Bedbrook CN; Arnold FH
    Bioinformatics; 2018 Aug; 34(15):2642-2648. PubMed ID: 29584811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-modality and self-supervised protein embedding for compound-protein affinity and contact prediction.
    You Y; Shen Y
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii68-ii74. PubMed ID: 36124802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving protein function prediction using protein sequence and GO-term similarities.
    Makrodimitris S; van Ham RCHJ; Reinders MJT
    Bioinformatics; 2019 Apr; 35(7):1116-1124. PubMed ID: 30169569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features.
    Jones DT; Kandathil SM
    Bioinformatics; 2018 Oct; 34(19):3308-3315. PubMed ID: 29718112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Features from Pretrained Networks Do Not Outperform Hand-Crafted Features in Radiomics.
    Demircioğlu A
    Diagnostics (Basel); 2023 Oct; 13(20):. PubMed ID: 37892087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Struct2GO: protein function prediction based on graph pooling algorithm and AlphaFold2 structure information.
    Jiao P; Wang B; Wang X; Liu B; Wang Y; Li J
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37847755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks.
    Pan X; Shen HB
    Bioinformatics; 2018 Oct; 34(20):3427-3436. PubMed ID: 29722865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction.
    Wang D; Zeng S; Xu C; Qiu W; Liang Y; Joshi T; Xu D
    Bioinformatics; 2017 Dec; 33(24):3909-3916. PubMed ID: 29036382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.