These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32797254)

  • 21. Denervation-related changes in acetylcholine receptor density and distribution in the rat flexor digitorum sublimis muscle.
    Guzzini M; Raffa S; Geuna S; Nicolino S; Torrisi MR; Tos P; Battiston B; Grassi F; Ferretti A
    Ital J Anat Embryol; 2008; 113(4):209-16. PubMed ID: 19507461
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid neuromuscular remodeling following limb immobilization.
    Fahim MA
    Anat Rec; 1989 May; 224(1):102-9. PubMed ID: 2729612
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ladder-based resistance training with the progression of training load altered the tibial nerve ultrastructure and muscle fiber area without altering the morphology of the postsynaptic compartment.
    Krause Neto W; Silva W; Oliveira T; Vilas Boas A; Ciena A; Caperuto ÉC; Gama EF
    Front Physiol; 2024; 15():1371839. PubMed ID: 38694209
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differences in neuromuscular junctions between intrinsic muscles of the forepaw and biceps muscles in rats.
    Qiao J; Gu JY; Li B
    Histol Histopathol; 2024 Apr; 39(4):525-531. PubMed ID: 37902551
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Motor unit and neuromuscular junction remodeling with aging.
    Deschenes MR
    Curr Aging Sci; 2011 Dec; 4(3):209-20. PubMed ID: 21529328
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of resistance training on neuromuscular junction morphology.
    Deschenes MR; Judelson DA; Kraemer WJ; Meskaitis VJ; Volek JS; Nindl BC; Harman FS; Deaver DR
    Muscle Nerve; 2000 Oct; 23(10):1576-81. PubMed ID: 11003794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Morphological Changes in the Motor Endplate and in the Belly Muscle Induced by Previous Static Stretching to the Climbing Protocol.
    Barbosa GK; Jacob CDS; Rodrigues MP; Rocha LC; Pimentel Neto J; Ciena AP
    Microsc Microanal; 2021 Jul; ():1-9. PubMed ID: 34294184
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NMDA receptors at the endplate of rat skeletal muscles: precise postsynaptic localization.
    Malomouzh AI; Nurullin LF; Arkhipova SS; Nikolsky EE
    Muscle Nerve; 2011 Dec; 44(6):987-9. PubMed ID: 22102472
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Motor endplate position of rat gastrocnemius muscle.
    Dekhuijzen AJ; van Koetsveld PA; Baan GC; Woittiez RD; Huijing PA
    Muscle Nerve; 1986 Sep; 9(7):642-7. PubMed ID: 3762584
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of immobilization on skeletal muscle nicotinic cholinergic receptors in the rat.
    Suliman IA; Lindgren JU; Gillberg PG; Diab KM; Adem A
    Neuroreport; 1997 Sep; 8(13):2821-4. PubMed ID: 9376511
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Colchicine-induced differential sprouting of the endplates on fast and slow muscle fibers in rat extensor digitorum longus, soleus and tibialis anterior muscles.
    Riley DA; Fahlman CS
    Brain Res; 1985 Mar; 329(1-2):83-95. PubMed ID: 3978464
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural and functional abnormalities of motor endplates in rat skeletal model of myofascial trigger spots.
    Liu QG; Huang QM; Liu L; Nguyen TT
    Neurosci Lett; 2019 Oct; 711():134417. PubMed ID: 31398457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional topography of the motor endplates of the rat gastrocnemius muscle.
    Prodanov D; Thil MA; Marani E; Delbeke J; Holsheimer J
    Muscle Nerve; 2005 Sep; 32(3):292-302. PubMed ID: 15948200
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Knee osteoarthritis induces atrophy and neuromuscular junction remodeling in the quadriceps and tibialis anterior muscles of rats.
    Cunha JE; Barbosa GM; Castro PATS; Luiz BLF; Silva ACA; Russo TL; Vasilceac FA; Cunha TM; Cunha FQ; Salvini TF
    Sci Rep; 2019 Apr; 9(1):6366. PubMed ID: 31019213
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic stabilization of acetylcholine receptors at newly formed neuromuscular junctions in rat.
    Reiness CG; Weinberg CB
    Dev Biol; 1981 Jun; 84(2):247-54. PubMed ID: 20737862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Herbal complex '
    Zhou L; Huang YF; Xie H; Mei XY; Cao J
    J Integr Neurosci; 2020 Mar; 19(1):89-99. PubMed ID: 32259889
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fiber atrophy, but not changes in acetylcholine receptor expression, contributes to the muscle dysfunction after immobilization.
    Ibebunjo C; Martyn JA
    Crit Care Med; 1999 Feb; 27(2):275-85. PubMed ID: 10075050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calcitonin receptor-like receptor expression in rat skeletal muscle fibers.
    Fernandez HL; Smith A; Dennis JS; Citron BA
    Brain Res; 2011 Jan; 1371():1-6. PubMed ID: 21111722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Matrix metalloproteinase 3 deletion preserves denervated motor endplates after traumatic nerve injury.
    Chao T; Frump D; Lin M; Caiozzo VJ; Mozaffar T; Steward O; Gupta R
    Ann Neurol; 2013 Feb; 73(2):210-23. PubMed ID: 23281061
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Morphology of diaphragm neuromuscular junctions on different fibre types.
    Prakash YS; Miller SM; Huang M; Sieck GC
    J Neurocytol; 1996 Feb; 25(2):88-100. PubMed ID: 8699198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.