These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 32797268)

  • 1. Digital Twins and Their Role in Model-Assisted Design of Experiments.
    Kuchemüller KB; Pörtner R; Möller J
    Adv Biochem Eng Biotechnol; 2021; 177():29-61. PubMed ID: 32797268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Optimization of Process Strategies with Model-Assisted Design of Experiments.
    Kuchemüller KB; Pörtner R; Möller J
    Methods Mol Biol; 2020; 2095():235-249. PubMed ID: 31858471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-assisted Design of Experiments as a concept for knowledge-based bioprocess development.
    Möller J; Kuchemüller KB; Steinmetz T; Koopmann KS; Pörtner R
    Bioprocess Biosyst Eng; 2019 May; 42(5):867-882. PubMed ID: 30806781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model-assisted DoE software: optimization of growth and biocatalysis in Saccharomyces cerevisiae bioprocesses.
    Moser A; Kuchemüller KB; Deppe S; Hernández Rodríguez T; Frahm B; Pörtner R; Hass VC; Möller J
    Bioprocess Biosyst Eng; 2021 Apr; 44(4):683-700. PubMed ID: 33471162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of cell expansion processes for adherent-growing cells with mDoE-workflow.
    Kuchemüller KB; Pörtner R; Möller J
    Eng Life Sci; 2023 May; 23(5):e2200059. PubMed ID: 37153028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Process Optimization using High Throughput Automated Micro-Bioreactors in Chinese Hamster Ovary Cell Cultivation.
    Nagraik T; Gonzalez Salcedo A; Solle D; Scheper T
    J Vis Exp; 2020 May; (159):. PubMed ID: 32478715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of process conditions influencing protein aggregation in Chinese hamster ovary cell culture.
    Paul AJ; Handrick R; Ebert S; Hesse F
    Biotechnol Bioeng; 2018 May; 115(5):1173-1185. PubMed ID: 29280480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Addressing amino acid-derived inhibitory metabolites and enhancing CHO cell culture performance through DOE-guided media modifications.
    Ladiwala P; Dhara VG; Jenkins J; Kuang B; Hoang D; Yoon S; Betenbaugh MJ
    Biotechnol Bioeng; 2023 Sep; 120(9):2542-2558. PubMed ID: 37096798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation of mDoE-methods to a microcarrier-based expansion processes for mesenchymal stem cells.
    Kuchemüller KB; Pörtner R; Möller J
    Biotechnol Prog; 2024; 40(3):e3429. PubMed ID: 38334218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic Mathematical Models as a Basis for Digital Twins.
    Moser A; Appl C; Brüning S; Hass VC
    Adv Biochem Eng Biotechnol; 2021; 176():133-180. PubMed ID: 33205260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibody glycation during a Chinese hamster ovary fed-batch process is following a constrained second order reaction.
    Pappenreiter M; Lhota G; Vorauer-Uhl K; Sissolak B
    Biotechnol Prog; 2022 Sep; 38(5):e3261. PubMed ID: 35429153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a monoclonal antibody cell culture production process using a quality by design approach.
    Horvath B; Mun M; Laird MW
    Mol Biotechnol; 2010 Jul; 45(3):203-6. PubMed ID: 20300882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of a curated genome-scale metabolic model of CHO DG44 to an industrial fed-batch process.
    Calmels C; McCann A; Malphettes L; Andersen MR
    Metab Eng; 2019 Jan; 51():9-19. PubMed ID: 30227251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model Transferability and Reduced Experimental Burden in Cell Culture Process Development Facilitated by Hybrid Modeling and Intensified Design of Experiments.
    Bayer B; Duerkop M; Striedner G; Sissolak B
    Front Bioeng Biotechnol; 2021; 9():740215. PubMed ID: 35004635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening and optimization of chemically defined media and feeds with integrated and statistical approaches.
    Xiao Z; Sabourin M; Piras G; Gorfien SF
    Methods Mol Biol; 2014; 1104():117-35. PubMed ID: 24297413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of mechanistic and hybrid modeling approaches for characterization of a CHO cultivation process: Requirements, pitfalls and solution paths.
    Bayer B; Duerkop M; Pörtner R; Möller J
    Biotechnol J; 2023 Jan; 18(1):e2200381. PubMed ID: 36382343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data-driven prediction models for forecasting multistep ahead profiles of mammalian cell culture toward bioprocess digital twins.
    Park SY; Kim SJ; Park CH; Kim J; Lee DY
    Biotechnol Bioeng; 2023 Sep; 120(9):2494-2508. PubMed ID: 37079452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a mathematical model for evaluating the dynamics of normal and apoptotic Chinese hamster ovary cells.
    Naderi S; Meshram M; Wei C; McConkey B; Ingalls B; Budman H; Scharer J
    Biotechnol Prog; 2011; 27(5):1197-205. PubMed ID: 21618458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of cell culture damage and recovery leads to increased antibody and biomass productivity in CHO cell cultures.
    Naderi S; Nikdel A; Meshram M; McConkey B; Ingalls B; Budman H; Scharer J
    Biotechnol J; 2014 Sep; 9(9):1152-63. PubMed ID: 24852214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation and modeling of monoclonal antibody N-linked glycosylation in mammalian cell perfusion reactors.
    Karst DJ; Scibona E; Serra E; Bielser JM; Souquet J; Stettler M; Broly H; Soos M; Morbidelli M; Villiger TK
    Biotechnol Bioeng; 2017 Sep; 114(9):1978-1990. PubMed ID: 28409838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.