These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 32797410)

  • 1. Mathematical Modeling and Optimization of Cryopreservation in Single Cells.
    Benson JD
    Methods Mol Biol; 2021; 2180():129-172. PubMed ID: 32797410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and optimization of cryopreservation.
    D Benson J
    Methods Mol Biol; 2015; 1257():83-120. PubMed ID: 25428003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Principles Underlying Cryopreservation and Freeze-Drying of Cells and Tissues.
    Wolkers WF; Oldenhof H
    Methods Mol Biol; 2021; 2180():3-25. PubMed ID: 32797407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical Modeling of Protectant Transport in Tissues.
    Warner RM; Higgins AZ
    Methods Mol Biol; 2021; 2180():173-188. PubMed ID: 32797411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Principles of Ice-Free Cryopreservation by Vitrification.
    Fahy GM; Wowk B
    Methods Mol Biol; 2021; 2180():27-97. PubMed ID: 32797408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of cryopreservation of engineered tissues with one-dimensional geometry.
    Cui ZF; Dykhuizen RC; Nerem RM; Sembanis A
    Biotechnol Prog; 2002; 18(2):354-61. PubMed ID: 11934307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freezing Technology: Control of Freezing, Thawing, and Ice Nucleation.
    Kilbride P; Meneghel J
    Methods Mol Biol; 2021; 2180():191-201. PubMed ID: 32797412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryopreservation of equine sperm: optimal cooling rates in the presence and absence of cryoprotective agents determined using differential scanning calorimetry.
    Devireddy RV; Swanlund DJ; Olin T; Vincente W; Troedsson MH; Bischof JC; Roberts KP
    Biol Reprod; 2002 Jan; 66(1):222-31. PubMed ID: 11751286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subzero water permeability parameters of mouse spermatozoa in the presence of extracellular ice and cryoprotective agents.
    Devireddy RV; Swanlund DJ; Roberts KP; Bischof JC
    Biol Reprod; 1999 Sep; 61(3):764-75. PubMed ID: 10456855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryobiology of rat embryos II: A theoretical model for the development of interrupted slow freezing procedures.
    Liu J; Woods EJ; Agca Y; Critser ES; Critser JK
    Biol Reprod; 2000 Nov; 63(5):1303-12. PubMed ID: 11058533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotransport and intracellular ice formation phenomena in freezing human embryonic kidney cells (HEK293T).
    Xu Y; Zhao G; Zhou X; Ding W; Shu Z; Gao D
    Cryobiology; 2014 Apr; 68(2):294-302. PubMed ID: 24582893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of In Situ Fourier Transform Infrared Spectroscopy in Cryobiological Research.
    Wolkers WF; Oldenhof H
    Methods Mol Biol; 2021; 2180():331-349. PubMed ID: 32797419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The determination of membrane permeability coefficients of canine pancreatic islet cells and their application to islet cryopreservation.
    Liu J; Zieger MA; Lakey JR; Woods EJ; Critser JK
    Cryobiology; 1997 Aug; 35(1):1-13. PubMed ID: 9245505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of dimethylsulfoxide on the water transport response of rat hepatocytes during freezing.
    Smith DJ; Schulte M; Bischof JC
    J Biomech Eng; 1998 Oct; 120(5):549-58. PubMed ID: 10412431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of oocyte membrane permeability coefficients and their application to cryopreservation in a rabbit model.
    Liu J; Mullen S; Meng Q; Critser J; Dinnyes A
    Cryobiology; 2009 Oct; 59(2):127-34. PubMed ID: 19527701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryopreservation: Vitrification and Controlled Rate Cooling.
    Hunt CJ
    Methods Mol Biol; 2017; 1590():41-77. PubMed ID: 28353262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of non-ideal solution theories for multi-solute solutions in cryobiology and tabulation of required coefficients.
    Zielinski MW; McGann LE; Nychka JA; Elliott JA
    Cryobiology; 2014 Oct; 69(2):305-17. PubMed ID: 25158101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating membrane and mitochondrial cryobiological responses of HUVEC using interrupted cooling protocols.
    Reardon AJ; Elliott JA; McGann LE
    Cryobiology; 2015 Oct; 71(2):306-17. PubMed ID: 26254036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theoretical model of intracellular devitrification.
    Karlsson JO
    Cryobiology; 2001 May; 42(3):154-69. PubMed ID: 11578115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement and simulation of water transport during freezing in mammalian liver tissue.
    Pazhayannur PV; Bischof JC
    J Biomech Eng; 1997 Aug; 119(3):269-77. PubMed ID: 9285340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.