These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32797411)

  • 41. Microfluidics for cryopreservation.
    Song YS; Moon S; Hulli L; Hasan SK; Kayaalp E; Demirci U
    Lab Chip; 2009 Jul; 9(13):1874-81. PubMed ID: 19532962
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The nonsteady state modeling of freeze drying: in-process product temperature and moisture content mapping and pharmaceutical product quality applications.
    Pikal MJ; Cardon S; Bhugra C; Jameel F; Rambhatla S; Mascarenhas WJ; Akay HU
    Pharm Dev Technol; 2005; 10(1):17-32. PubMed ID: 15776810
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Physical-mathematical Model of Substance Redistribution between the Cell and its Hypertonic Solution Environment of Penetrating Cryoprotectants with Relevance to Membrane Potential.
    Todrin AF; Timofeyeva OV; Smolyaninova YI; Popivnenko LI; Gordienko OI
    Cryo Letters; 2020; 41(4):209-215. PubMed ID: 33988649
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cryoprotectant transport through articular cartilage for long-term storage: experimental and modeling studies.
    Mukherjee IN; Li Y; Song YC; Long RC; Sambanis A
    Osteoarthritis Cartilage; 2008 Nov; 16(11):1379-86. PubMed ID: 18539055
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optimization of composite cryoprotectant for freeze-drying Bifidobacterium bifidum BB01 by response surface methodology.
    Chen H; Tian M; Chen L; Cui X; Meng J; Shu G
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):1559-1569. PubMed ID: 31007080
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cryobiology of rat embryos I: determination of zygote membrane permeability coefficients for water and cryoprotectants, their activation energies, and the development of improved cryopreservation methods.
    Pfaff RT; Agca Y; Liu J; Woods EJ; Peter AT; Critser JK
    Biol Reprod; 2000 Nov; 63(5):1294-302. PubMed ID: 11058532
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Insights from a Thermodynamic Study and Its Implications on the Freeze-Drying of Pharmaceutical Solutions Containing Water and
    Wang JC; Bruttini R; Liapis AI
    PDA J Pharm Sci Technol; 2019; 73(3):247-259. PubMed ID: 30651336
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Exploring Dynamics and Structure of Biomolecules, Cryoprotectants, and Water Using Molecular Dynamics Simulations: Implications for Biostabilization and Biopreservation.
    Weng L; Stott SL; Toner M
    Annu Rev Biomed Eng; 2019 Jun; 21():1-31. PubMed ID: 30525930
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Calorimetric analysis of cryopreservation and freeze-drying formulations.
    Sun WQ
    Methods Mol Biol; 2015; 1257():163-79. PubMed ID: 25428006
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Predicted permeability parameters of human ovarian tissue cells to various cryoprotectants and water.
    Devireddy RV
    Mol Reprod Dev; 2005 Mar; 70(3):333-43. PubMed ID: 15625698
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A model for predicting the permeation of dimethyl sulfoxide into articular cartilage, and its application to the liquidus-tracking method.
    Yu X; Chen G; Zhang S
    Cryobiology; 2013 Dec; 67(3):332-8. PubMed ID: 24125912
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cryopreservation of shoot-tips and meristems.
    Benson EE
    Methods Mol Biol; 1995; 38():121-32. PubMed ID: 7647851
    [No Abstract]   [Full Text] [Related]  

  • 53. Transport phenomena in articular cartilage cryopreservation as predicted by the modified triphasic model and the effect of natural inhomogeneities.
    Abazari A; Thompson RB; Elliott JA; McGann LE
    Biophys J; 2012 Mar; 102(6):1284-93. PubMed ID: 22455911
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Storage stability and sourdough acidification kinetic of freeze-dried Lactobacillus curvatus N19 under optimized cryoprotectant formulation.
    Gul LB; Con AH; Gul O
    Cryobiology; 2020 Oct; 96():122-129. PubMed ID: 32712072
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preservation strategies for decellularized pericardial scaffolds for off-the-shelf availability.
    Zouhair S; Aguiari P; Iop L; Vásquez-Rivera A; Filippi A; Romanato F; Korossis S; Wolkers WF; Gerosa G
    Acta Biomater; 2019 Jan; 84():208-221. PubMed ID: 30342283
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Long-term storage of tissues by cryopreservation: critical issues.
    Karlsson JO; Toner M
    Biomaterials; 1996 Feb; 17(3):243-56. PubMed ID: 8745321
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Research progress on trehalose used in lyophilization of blood cells--review].
    Chen Y; Lu ZG
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2006 Apr; 14(2):416-8. PubMed ID: 16638229
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Principles of cryopreservation.
    Pegg DE
    Methods Mol Biol; 2007; 368():39-57. PubMed ID: 18080461
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Freeze-drying of mammalian sperm.
    Keskintepe L; Eroglu A
    Methods Mol Biol; 2015; 1257():489-97. PubMed ID: 25428025
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preservation of frozen yeast cells by trehalose.
    Diniz-Mendes L; Bernardes E; de Araujo PS; Panek AD; Paschoalin VM
    Biotechnol Bioeng; 1999 Dec; 65(5):572-8. PubMed ID: 10516583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.