These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 32797815)
1. Modeling hindered diffusion of antibodies in agarose beads considering pore size reduction due to adsorption. Hagemann F; Adametz P; Wessling M; Thom V J Chromatogr A; 2020 Aug; 1626():461319. PubMed ID: 32797815 [TBL] [Abstract][Full Text] [Related]
2. Effect of hindered diffusion on the adsorption of proteins in agarose gel using a pore model. Gutenwik J; Nilsson B; Axelsson A J Chromatogr A; 2004 Sep; 1048(2):161-72. PubMed ID: 15481253 [TBL] [Abstract][Full Text] [Related]
3. IgG adsorption on a new protein A adsorbent based on macroporous hydrophilic polymers. I. Adsorption equilibrium and kinetics. Perez-Almodovar EX; Carta G J Chromatogr A; 2009 Nov; 1216(47):8339-47. PubMed ID: 19783254 [TBL] [Abstract][Full Text] [Related]
4. Performance of agarose and gigaporous chromatographic media as function of pore-to-adsorbate size ratio over wide span from ovalbumin to virus like particles. Yang Y; Yu M; Ma G; Su Z; Zhang S J Chromatogr A; 2021 Feb; 1638():461879. PubMed ID: 33465583 [TBL] [Abstract][Full Text] [Related]
5. Improving stability of virus-like particles by ion-exchange chromatographic supports with large pore size: advantages of gigaporous media beyond enhanced binding capacity. Yu M; Li Y; Zhang S; Li X; Yang Y; Chen Y; Ma G; Su Z J Chromatogr A; 2014 Feb; 1331():69-79. PubMed ID: 24485037 [TBL] [Abstract][Full Text] [Related]
6. Protein adsorption and transport in agarose and dextran-grafted agarose media for ion exchange chromatography. Stone MC; Carta G J Chromatogr A; 2007 Apr; 1146(2):202-15. PubMed ID: 17336312 [TBL] [Abstract][Full Text] [Related]
7. Fabrication and evaluation of low-cost agarose-zinc nanoporous composite matrix: influence of adsorbent density and size distribution on the performance of expanded beds. Asghari F; Jahanshahi M J Chromatogr A; 2012 Sep; 1257():89-97. PubMed ID: 22920304 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of superporous agarose beads for protein adsorption: effect of CaCO3 granules content. Du KF; Bai S; Dong XY; Sun Y J Chromatogr A; 2010 Sep; 1217(37):5808-16. PubMed ID: 20691973 [TBL] [Abstract][Full Text] [Related]
9. Dextran-grafted cation exchanger based on superporous agarose gel: adsorption isotherms, uptake kinetics and dynamic protein adsorption performance. Shi QH; Jia GD; Sun Y J Chromatogr A; 2010 Jul; 1217(31):5084-91. PubMed ID: 20579653 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of agarose-nickel nanoporous composite particles customized for liquid expanded bed adsorption. Asghari F; Jahanshahi M; Ghoreyshi AA J Chromatogr A; 2012 Jun; 1242():35-42. PubMed ID: 22564699 [TBL] [Abstract][Full Text] [Related]
11. Enhancing purification efficiency of affinity functionalized composite agarose micro beads using Fe Amiri S; Mehrnia MR; Roudsari FP J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Jan; 1041-1042():27-36. PubMed ID: 28006673 [TBL] [Abstract][Full Text] [Related]
13. Dynamics of protein uptake within the adsorbent particle during packed bed chromatography. Hubbuch J; Linden T; Knieps E; Thömmes J; Kula MR Biotechnol Bioeng; 2002 Nov; 80(4):359-68. PubMed ID: 12325144 [TBL] [Abstract][Full Text] [Related]
14. [Preparation technology comparison and performance evaluation of different protein A affinity chromatographic materials]. Zhou LJ; Wang Z; Ren XF; Liu DY; Zhang LY; Zhang WB Se Pu; 2024 Apr; 42(5):410-419. PubMed ID: 38736384 [TBL] [Abstract][Full Text] [Related]
15. Monolithic cryogels made of agarose-chitosan composite and loaded with agarose beads for purification of immunoglobulin G. Sun S; Tang Y; Fu Q; Liu X; Guo L; Zhao Y; Chang C Int J Biol Macromol; 2012 May; 50(4):1002-7. PubMed ID: 22405846 [TBL] [Abstract][Full Text] [Related]
16. Effect of pore structure on protein adsorption mechanism on ion exchange media: A preliminary study using low field nuclear magnetic resonance. Chen C; Zhao D; Su Z; Luo J; Ma G; Zhang S; Li X J Chromatogr A; 2021 Feb; 1639():461904. PubMed ID: 33486445 [TBL] [Abstract][Full Text] [Related]
17. Effects of molecule size and resin structure on protein adsorption on multimodal anion exchange chromatography media. Roberts JA; Kimerer L; Carta G J Chromatogr A; 2020 Sep; 1628():461444. PubMed ID: 32822983 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of rigid and macroporous agarose microspheres by pre-cross-linking and surfactant micelles swelling method. Zhao X; Huang L; Wu J; Huang YD; Zhao L; Wu N; Zhou WQ; Hao DX; Ma GH; Su ZG Colloids Surf B Biointerfaces; 2019 Oct; 182():110377. PubMed ID: 31351275 [TBL] [Abstract][Full Text] [Related]
19. Theoretical investigation of axial and local particle size distribution on expanded bed adsorption process. Kaczmarski K; Bellot JC Biotechnol Prog; 2004; 20(3):786-92. PubMed ID: 15176883 [TBL] [Abstract][Full Text] [Related]
20. Rapid monoclonal antibody adsorption on dextran-grafted agarose media for ion-exchange chromatography. Tao Y; Carta G J Chromatogr A; 2008 Nov; 1211(1-2):70-9. PubMed ID: 18929362 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]