These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 32797815)
21. Porous ceramic/agarose composite adsorbents for fast protein liquid chromatography. Xia H; Jin X; Wu P; Zheng Z J Chromatogr A; 2012 Feb; 1223():126-30. PubMed ID: 22226554 [TBL] [Abstract][Full Text] [Related]
22. Evaluation and characterization of axial distribution in expanded bed. I. Bead size, bead density and local bed voidage. Lin DQ; Tong HF; van de Sandt EJ; den Boer P; Golubović M; Yao SJ J Chromatogr A; 2013 Aug; 1304():78-84. PubMed ID: 23871286 [TBL] [Abstract][Full Text] [Related]
23. Preparation of uniform-sized agarose beads by microporous membrane emulsification technique. Zhou QZ; Wang LY; Ma GH; Su ZG J Colloid Interface Sci; 2007 Jul; 311(1):118-27. PubMed ID: 17362974 [TBL] [Abstract][Full Text] [Related]
24. Protein adsorption and transport in dextran-modified ion-exchange media. II. Intraparticle uptake and column breakthrough. Bowes BD; Lenhoff AM J Chromatogr A; 2011 Jul; 1218(29):4698-708. PubMed ID: 21683363 [TBL] [Abstract][Full Text] [Related]
25. Chemical modification of protein A chromatography ligands with polyethylene glycol. I: Effects on IgG adsorption equilibrium, kinetics, and transport. Weinberg J; Zhang S; Crews G; Carta G; Przybycien T J Chromatogr A; 2018 Apr; 1546():77-88. PubMed ID: 29551236 [TBL] [Abstract][Full Text] [Related]
26. A novel superporous agarose medium for high-speed protein chromatography. Shi QH; Zhou X; Sun Y Biotechnol Bioeng; 2005 Dec; 92(5):643-51. PubMed ID: 16261631 [TBL] [Abstract][Full Text] [Related]
27. Determination of pore size distributions in capillary-channeled polymer fiber stationary phases by inverse size-exclusion chromatography and implications for fast protein separations. Wang Z; Marcus RK J Chromatogr A; 2014 Jul; 1351():82-9. PubMed ID: 24877979 [TBL] [Abstract][Full Text] [Related]
28. Regulation on both pore structure and pressure-resistant property of uniform agarose microspheres for high-resolution chromatography. Zhao L; Che X; Huang Y; Zhu K; Du Y; Gao J; Zhang R; Zhang Y; Ma G J Chromatogr A; 2022 Oct; 1681():463461. PubMed ID: 36108352 [TBL] [Abstract][Full Text] [Related]
29. IgG adsorption on a new protein A adsorbent based on macroporous hydrophilic polymers II. Pressure-flow curves and optimization for capture. Perez-Almodovar EX; Carta G J Chromatogr A; 2009 Nov; 1216(47):8348-54. PubMed ID: 19786279 [TBL] [Abstract][Full Text] [Related]
30. Characterization of a continuous supermacroporous monolithic matrix for chromatographic separation of large bioparticles. Persson P; Baybak O; Plieva F; Galaev IY; Mattiasson B; Nilsson B; Axelsson A Biotechnol Bioeng; 2004 Oct; 88(2):224-36. PubMed ID: 15449292 [TBL] [Abstract][Full Text] [Related]
31. Towards rational design of porous nanostructured biopolymeric microparticles for biomacromolecules separation: A case study of intraparticle diffusion facilitation and BSA adsorption on agarose microspheres. Roudsari FP; Mehrnia MR; Kaghazian H Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():518-528. PubMed ID: 30274085 [TBL] [Abstract][Full Text] [Related]
32. Comparison of small size fully porous particles and superficially porous particles of chiral anion-exchange type stationary phases in ultra-high performance liquid chromatography: effect of particle and pore size on chromatographic efficiency and kinetic performance. Schmitt K; Woiwode U; Kohout M; Zhang T; Lindner W; Lämmerhofer M J Chromatogr A; 2018 Sep; 1569():149-159. PubMed ID: 30041874 [TBL] [Abstract][Full Text] [Related]
33. Influence of the pore size of reversed phase materials on peptide purification processes. Gétaz D; Dogan N; Forrer N; Morbidelli M J Chromatogr A; 2011 May; 1218(20):2912-22. PubMed ID: 21450297 [TBL] [Abstract][Full Text] [Related]
34. Evaluation of recent Protein A stationary phase innovations for capture of biotherapeutics. Pabst TM; Thai J; Hunter AK J Chromatogr A; 2018 Jun; 1554():45-60. PubMed ID: 29685337 [TBL] [Abstract][Full Text] [Related]
35. Parallel pore and surface diffusion of levulinic acid in basic polymeric adsorbents. Liu B; Yang Y; Ren Q J Chromatogr A; 2006 Nov; 1132(1-2):190-200. PubMed ID: 16919646 [TBL] [Abstract][Full Text] [Related]
36. Predicting intraparticle diffusivity as function of stationary phase characteristics in preparative chromatography. Schultze-Jena A; Boon MA; de Winter DAM; Bussmann PJT; Janssen AEM; van der Padt A J Chromatogr A; 2020 Feb; 1613():460688. PubMed ID: 31813564 [TBL] [Abstract][Full Text] [Related]
37. Pore size distributions of ion exchangers and relation to protein binding capacity. Yao Y; Lenhoff AM J Chromatogr A; 2006 Sep; 1126(1-2):107-19. PubMed ID: 16844131 [TBL] [Abstract][Full Text] [Related]
38. Uptake of mercury by thiol-grafted chitosan gel beads. Merrifield JD; Davids WG; MacRae JD; Amirbahman A Water Res; 2004 Jul; 38(13):3132-8. PubMed ID: 15261552 [TBL] [Abstract][Full Text] [Related]
39. The construction of porous chitosan microspheres with high specific surface area by using agarose as the pore-forming agent and further functionalized application in bioseparation. Qiao L; Zhao L; Liang C; Du K J Mater Chem B; 2019 Sep; 7(36):5510-5519. PubMed ID: 31429461 [TBL] [Abstract][Full Text] [Related]
40. Protein adsorption and transport in agarose and dextran-grafted agarose media for ion exchange chromatography: Effect of ionic strength and protein characteristics. Stone MC; Tao Y; Carta G J Chromatogr A; 2009 May; 1216(20):4465-74. PubMed ID: 19342054 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]