These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 32797860)
1. Determination of recovery rates of adsorbents for sampling very volatile organic compounds (C Richter M; Juritsch E; Jann O J Chromatogr A; 2020 Aug; 1626():461389. PubMed ID: 32797860 [TBL] [Abstract][Full Text] [Related]
2. Selection of gas standards, gas chromatography column and adsorbents for the measurement of very volatile organic compounds (C Even M; Juritsch E; Richter M Anal Chim Acta; 2023 Jan; 1238():340561. PubMed ID: 36464442 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of the stability of a mixture of volatile organic compounds on sorbents for the determination of emissions from indoor materials and products using thermal desorption/gas chromatography/mass spectrometry. Brown VM; Crump DR; Plant NT; Pengelly I J Chromatogr A; 2014 Jul; 1350():1-9. PubMed ID: 24877978 [TBL] [Abstract][Full Text] [Related]
4. Comparison of two common adsorption materials for thermal desorption gas chromatography - mass spectrometry of biogenic volatile organic compounds. Marcillo A; Jakimovska V; Widdig A; Birkemeyer C J Chromatogr A; 2017 Sep; 1514():16-28. PubMed ID: 28765001 [TBL] [Abstract][Full Text] [Related]
5. Measurement of breakthrough volumes of volatile chemical warfare agents on a poly(2,6-diphenylphenylene oxide)-based adsorbent and application to thermal desorption-gas chromatography/mass spectrometric analysis. Kanamori-Kataoka M; Seto Y J Chromatogr A; 2015 Sep; 1410():19-27. PubMed ID: 26239699 [TBL] [Abstract][Full Text] [Related]
6. Comparative study of the adsorption performance of a multi-sorbent bed (Carbotrap, Carbopack X, Carboxen 569) and a Tenax TA adsorbent tube for the analysis of volatile organic compounds (VOCs). Gallego E; Roca FJ; Perales JF; Guardino X Talanta; 2010 May; 81(3):916-24. PubMed ID: 20298873 [TBL] [Abstract][Full Text] [Related]
7. Challenges of fast sampling of volatiles for thermal desorption gas chromatography - mass spectrometry. Marcillo A; Weiß BM; Widdig A; Birkemeyer C J Chromatogr A; 2020 Apr; 1617():460822. PubMed ID: 31928772 [TBL] [Abstract][Full Text] [Related]
8. Development of analysis of volatile polyfluorinated alkyl substances in indoor air using thermal desorption-gas chromatography-mass spectrometry. Wu Y; Chang VW J Chromatogr A; 2012 May; 1238():114-20. PubMed ID: 22494639 [TBL] [Abstract][Full Text] [Related]
9. A New Method for Workplace Monitoring of Airborne Diacetyl and 2,3-Pentanedione Using Thermal Desorption Tubes and Gas Chromatography-Mass Spectrometry. Pengelly I; Brown VM Ann Work Expo Health; 2019 Apr; 63(4):407-414. PubMed ID: 30893441 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of selected solid adsorbents for passive sampling of atmospheric oil and natural gas non-methane hydrocarbons. Helmig D; Fangmeyer J; Fuchs J; Hueber J; Smith K J Air Waste Manag Assoc; 2022 Mar; 72(3):235-255. PubMed ID: 34738882 [TBL] [Abstract][Full Text] [Related]
11. Sensitive indoor air monitoring of monoterpenes using different adsorbents and thermal desorption gas chromatography with mass-selective detection. Hollender J; Sandner F; Möller M; Dott W J Chromatogr A; 2002 Jul; 962(1-2):175-81. PubMed ID: 12198961 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of sorbent materials for the sampling and analysis of phosphine, sulfuryl fluoride and methyl bromide in air. Magnusson R; Rittfeldt L; Åstot C J Chromatogr A; 2015 Jan; 1375():17-26. PubMed ID: 25512126 [TBL] [Abstract][Full Text] [Related]
13. Adsorption of water vapour from humid air by selected carbon adsorbents. Fastyn P; Kornacki W; Gierczak T; Gawłowski J; Niedzielski J J Chromatogr A; 2005 Jun; 1078(1-2):7-12. PubMed ID: 16007975 [TBL] [Abstract][Full Text] [Related]
14. Determination of seven pyrethroids biocides and their synergist in indoor air by thermal-desorption gas chromatography/mass spectrometry after sampling on Tenax TA ® passive tubes. Raeppel C; Appenzeller BM; Millet M Talanta; 2015 Jan; 131():309-14. PubMed ID: 25281107 [TBL] [Abstract][Full Text] [Related]
15. Development and validation of a method for air-quality and nuisance odors monitoring of volatile organic compounds using multi-sorbent adsorption and gas chromatography/mass spectrometry thermal desorption system. Ribes A; Carrera G; Gallego E; Roca X; Berenguer MA; Guardino X J Chromatogr A; 2007 Jan; 1140(1-2):44-55. PubMed ID: 17187810 [TBL] [Abstract][Full Text] [Related]
16. Effects of high relative humidity and dry purging on VOCs obtained during breath sampling on common sorbent tubes. Wilkinson M; White IR; Goodacre R; Nijsen T; Fowler SJ J Breath Res; 2020 Jul; 14(4):046006. PubMed ID: 32153262 [TBL] [Abstract][Full Text] [Related]
18. Characterization and determination of the odorous charge in the indoor air of a waste treatment facility through the evaluation of volatile organic compounds (VOCs) using TD-GC/MS. Gallego E; Roca FJ; Perales JF; Sánchez G; Esplugas P Waste Manag; 2012 Dec; 32(12):2469-81. PubMed ID: 22883687 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of adsorbents for volatile methyl siloxanes sampling based on the determination of their breakthrough volume. Lamaa L; Ferronato C; Fine L; Jaber F; Chovelon JM Talanta; 2013 Oct; 115():881-6. PubMed ID: 24054678 [TBL] [Abstract][Full Text] [Related]
20. A novel approach to evaluation of adsorbents for sampling indoor volatile organic compounds associated with symptom reports. Glas B; Stenberg B; Stenlund H; Sunesson AL J Environ Monit; 2008 Nov; 10(11):1297-303. PubMed ID: 18974898 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]