These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 32797892)

  • 1. Indirect Nano-sensing approach: A universal potentiometric silver ion selective sensor for inline quantitative profiling of the kinetics and thermodynamics of formation and decay of silver nanoparticles.
    Eid SM
    Talanta; 2020 Oct; 218():121135. PubMed ID: 32797892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of coated-wire silver ion selective electrodes on paper using conductive films of silver nanoparticles.
    Janrungroatsakul W; Lertvachirapaiboon C; Ngeontae W; Aeungmaitrepirom W; Chailapakul O; Ekgasit S; Tuntulani T
    Analyst; 2013 Nov; 138(22):6786-92. PubMed ID: 24071789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface coating-modulated toxic responses to silver nanoparticles in Wolffia globosa.
    Zou X; Li P; Lou J; Zhang H
    Aquat Toxicol; 2017 Aug; 189():150-158. PubMed ID: 28644992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicokinetics and toxicodynamics of differently coated silver nanoparticles and silver nitrate in Enchytraeus crypticus upon aqueous exposure in an inert sand medium.
    Topuz E; van Gestel CA
    Environ Toxicol Chem; 2015 Dec; 34(12):2816-23. PubMed ID: 26094724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioconcentration and distribution of silver nanoparticles in Japanese medaka (Oryzias latipes).
    Jung YJ; Kim KT; Kim JY; Yang SY; Lee BG; Kim SD
    J Hazard Mater; 2014 Feb; 267():206-13. PubMed ID: 24457612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentiating Silver Nanoparticles and Ions in Medaka Larvae by Coupling Two Aggregation-Induced Emission Fluorophores.
    Yan N; He X; Tang BZ; Wang WX
    Environ Sci Technol; 2019 May; 53(10):5895-5905. PubMed ID: 31032615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ratiometric Phosphorescent Silver Sensor: Detection and Quantification of Free Silver Ions within Silver Nanoparticles.
    Benton EN; Marpu SB; Omary MA
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):15038-15043. PubMed ID: 30900866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity of differently sized and charged silver nanoparticles to yeast
    Kasemets K; Käosaar S; Vija H; Fascio U; Mantecca P
    Nanotoxicology; 2019 Oct; 13(8):1041-1059. PubMed ID: 31107118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion-release kinetics and ecotoxicity effects of silver nanoparticles.
    Lee YJ; Kim J; Oh J; Bae S; Lee S; Hong IS; Kim SH
    Environ Toxicol Chem; 2012 Jan; 31(1):155-9. PubMed ID: 22012883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid state synthesis of starch-capped silver nanoparticles.
    Hebeish A; Shaheen TI; El-Naggar ME
    Int J Biol Macromol; 2016 Jun; 87():70-6. PubMed ID: 26902893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics.
    Zhang W; Yao Y; Sullivan N; Chen Y
    Environ Sci Technol; 2011 May; 45(10):4422-8. PubMed ID: 21513312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Citrate-capped silver nanoparticles as a probe for sensitive and selective colorimetric and spectrophotometric sensing of creatinine in human urine.
    Alula MT; Karamchand L; Hendricks NR; Blackburn JM
    Anal Chim Acta; 2018 May; 1007():40-49. PubMed ID: 29405987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective turn-on fluorescence sensor for Ag+ using cysteamine capped CdS quantum dots: determination of free Ag+ in silver nanoparticles solution.
    Khantaw T; Boonmee C; Tuntulani T; Ngeontae W
    Talanta; 2013 Oct; 115():849-56. PubMed ID: 24054673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ammonia Sensing and Cytotoxicity of the Biosynthesized Silver Nanoparticle by Arabic Gum (AG).
    Elahi NJ; Salehmoghadam M; Taherzadeh D; Hashemzadeh A; Darroudi M
    Recent Pat Biotechnol; 2019; 13(3):228-238. PubMed ID: 30657052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time monitoring of the dissolution of silver nanoparticles by using a solid-contact Ag
    Yin T; Han T; Li C; Qin W; Bobacka J
    Anal Chim Acta; 2020 Mar; 1101():50-57. PubMed ID: 32029118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biopolymer capped silver nanoparticles as fluorophore for ultrasensitive and selective determination of malathion.
    Vasimalai N; Abraham John S
    Talanta; 2013 Oct; 115():24-31. PubMed ID: 24054557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Tiered Experimental Approach for Characterization and Silver Release of Silver-Containing Wound Dressings.
    Xu L; Bai R; Cheng X; Shao A; Chen L; Qu S; Chen C
    J Biomed Nanotechnol; 2018 Mar; 14(3):564-574. PubMed ID: 29663928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissolution kinetics of silver nanoparticles: Behaviour in simulated biological fluids and synthetic environmental media.
    Mbanga O; Cukrowska E; Gulumian M
    Toxicol Rep; 2022; 9():788-796. PubMed ID: 36518472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential impact of natural organic ligands on the colloidal stability of silver nanoparticles.
    Afshinnia K; Marrone B; Baalousha M
    Sci Total Environ; 2018 Jun; 625():1518-1526. PubMed ID: 29996448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative toxicity of silver nanoparticles and silver ions to Escherichia coli.
    Choi Y; Kim HA; Kim KW; Lee BT
    J Environ Sci (China); 2018 Apr; 66():50-60. PubMed ID: 29628108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.