BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 32798012)

  • 41. Analyses of erythropoiesis from embryonic stem cell-CD34
    Wang S; Zhao H; Zhang H; Gao C; Guo X; Chen L; Lobo C; Yazdanbakhsh K; Zhang S; An X
    J Cell Mol Med; 2022 Apr; 26(8):2404-2416. PubMed ID: 35249258
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of the kinetics of band 3 diffusion in human erythroblasts during assembly of the erythrocyte membrane skeleton.
    Kodippili GC; Spector J; Kang GE; Liu H; Wickrema A; Ritchie K; Low PS
    Br J Haematol; 2010 Sep; 150(5):592-600. PubMed ID: 20553270
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Morphofunctional characteristics of erythron (review of the literature)].
    Sarycheva TG; Kozinets GI
    Klin Lab Diagn; 2001; (5):3-8. PubMed ID: 11507881
    [No Abstract]   [Full Text] [Related]  

  • 44. Member-associated changes during erythropoiesis. On the mechanism of maturation of reticulocytes to erythrocytes.
    Zweig SE; Tokuyasu KT; Singer SJ
    J Supramol Struct Cell Biochem; 1981; 17(2):163-81. PubMed ID: 7321058
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells.
    Yoshida H; Kawane K; Koike M; Mori Y; Uchiyama Y; Nagata S
    Nature; 2005 Sep; 437(7059):754-8. PubMed ID: 16193055
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The cytoskeletal binding domain of band 3 is required for multiprotein complex formation and retention during erythropoiesis.
    Satchwell TJ; Hawley BR; Bell AJ; Ribeiro ML; Toye AM
    Haematologica; 2015 Jan; 100(1):133-42. PubMed ID: 25344524
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Terminal differentiation of human peripheral blood CD34 positive cells to reticulocytes in vitro and effects of cytoskeletal modifiers on enucleation].
    Fukada Y
    Hokkaido Igaku Zasshi; 1998 Nov; 73(6):543-56. PubMed ID: 10036613
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Yolk sac-derived primitive erythroblasts enucleate during mammalian embryogenesis.
    Kingsley PD; Malik J; Fantauzzo KA; Palis J
    Blood; 2004 Jul; 104(1):19-25. PubMed ID: 15031208
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Non-muscle myosin II drives vesicle loss during human reticulocyte maturation.
    Moura PL; Hawley BR; Mankelow TJ; Griffiths RE; Dobbe JGG; Streekstra GJ; Anstee DJ; Satchwell TJ; Toye AM
    Haematologica; 2018 Dec; 103(12):1997-2007. PubMed ID: 30076174
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chromatin condensation in terminally differentiating mouse erythroblasts does not involve special architectural proteins but depends on histone deacetylation.
    Popova EY; Krauss SW; Short SA; Lee G; Villalobos J; Etzell J; Koury MJ; Ney PA; Chasis JA; Grigoryev SA
    Chromosome Res; 2009; 17(1):47-64. PubMed ID: 19172406
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Erythropoiesis in the absence of adult hemoglobin.
    Liu S; McConnell SC; Ryan TM
    Mol Cell Biol; 2013 Jun; 33(11):2241-51. PubMed ID: 23530053
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanism of protein sorting during erythroblast enucleation: role of cytoskeletal connectivity.
    Lee JC; Gimm JA; Lo AJ; Koury MJ; Krauss SW; Mohandas N; Chasis JA
    Blood; 2004 Mar; 103(5):1912-9. PubMed ID: 14563645
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Extrinsic and intrinsic control by EKLF (KLF1) within a specialized erythroid niche.
    Xue L; Galdass M; Gnanapragasam MN; Manwani D; Bieker JJ
    Development; 2014 Jun; 141(11):2245-54. PubMed ID: 24866116
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impairment of human terminal erythroid differentiation by histone deacetylase 5 deficiency.
    Wang Y; Li W; Schulz VP; Zhao H; Qu X; Qi Q; Cheng Y; Guo X; Zhang S; Wei X; Liu D; Yazdanbakhsh K; Hillyer CD; Mohandas N; Chen L; Gallagher PG; An X
    Blood; 2021 Oct; 138(17):1615-1627. PubMed ID: 34036344
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ankyrin and band 3 differentially affect expression of membrane glycoproteins but are not required for erythroblast enucleation.
    Ji P; Lodish HF
    Biochem Biophys Res Commun; 2012 Jan; 417(4):1188-92. PubMed ID: 22226968
    [TBL] [Abstract][Full Text] [Related]  

  • 56. p38α controls erythroblast enucleation and Rb signaling in stress erythropoiesis.
    Schultze SM; Mairhofer A; Li D; Cen J; Beug H; Wagner EF; Hui L
    Cell Res; 2012 Mar; 22(3):539-50. PubMed ID: 21946500
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Translational control mediated by hnRNP K links NMHC IIA to erythroid enucleation.
    Naarmann-de Vries IS; Brendle A; Bähr-Ivacevic T; Benes V; Ostareck DH; Ostareck-Lederer A
    J Cell Sci; 2016 Mar; 129(6):1141-54. PubMed ID: 26823606
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Erythropoietin receptor characteristics on primary human erythroid cells.
    Broudy VC; Lin N; Brice M; Nakamoto B; Papayannopoulou T
    Blood; 1991 Jun; 77(12):2583-90. PubMed ID: 1646044
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Orchestration of late events in erythropoiesis by KLF1/EKLF.
    Gnanapragasam MN; Bieker JJ
    Curr Opin Hematol; 2017 May; 24(3):183-190. PubMed ID: 28157724
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rho GTPases in erythroid maturation.
    Kalfa TA; Zheng Y
    Curr Opin Hematol; 2014 May; 21(3):165-71. PubMed ID: 24492678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.