These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32798354)

  • 1. Efficient inversion strategies for estimating optical properties with Monte Carlo radiative transport models.
    Macdonald C; Arridge S; Powell S
    J Biomed Opt; 2020 Aug; 25(8):. PubMed ID: 32798354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive stochastic Gauss-Newton method with optical Monte Carlo for quantitative photoacoustic tomography.
    Hänninen N; Pulkkinen A; Arridge S; Tarvainen T
    J Biomed Opt; 2022 Apr; 27(8):. PubMed ID: 35396833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo-based data generation for efficient deep learning reconstruction of macroscopic diffuse optical tomography and topography applications.
    Nizam NI; Ochoa M; Smith JT; Gao S; Intes X
    J Biomed Opt; 2022 Apr; 27(8):. PubMed ID: 35484688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional quantitative photoacoustic tomography using an adjoint radiance Monte Carlo model and gradient descent.
    Buchmann J; Kaplan B; Powell S; Prohaska S; Laufer J
    J Biomed Opt; 2019 Jun; 24(6):1-13. PubMed ID: 31172727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical imaging in medicine: II. Modelling and reconstruction.
    Arridge SR; Hebden JC
    Phys Med Biol; 1997 May; 42(5):841-53. PubMed ID: 9172263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perturbation Monte Carlo Method for Quantitative Photoacoustic Tomography.
    Leino AA; Lunttila T; Mozumder M; Pulkkinen A; Tarvainen T
    IEEE Trans Med Imaging; 2020 Oct; 39(10):2985-2995. PubMed ID: 32217473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain.
    Pan T; Rasmussen JC; Lee JH; Sevick-Muraca EM
    Med Phys; 2007 Apr; 34(4):1298-311. PubMed ID: 17500461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography.
    Cai C; Rodet T; Legoupil S; Mohammad-Djafari A
    Med Phys; 2013 Nov; 40(11):111916. PubMed ID: 24320449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative photoacoustic tomography with light fluence compensation based on radiance Monte Carlo model.
    Zheng S; Yingsa H; Meichen S; Qi M
    Phys Med Biol; 2023 Mar; 68(6):. PubMed ID: 36821863
    [No Abstract]   [Full Text] [Related]  

  • 10. Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer.
    Klose AD; Hielscher AH
    Med Phys; 1999 Aug; 26(8):1698-707. PubMed ID: 10501069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New capabilities of the Monte Carlo dose engine ARCHER-RT: Clinical validation of the Varian TrueBeam machine for VMAT external beam radiotherapy.
    Adam DP; Liu T; Caracappa PF; Bednarz BP; Xu XG
    Med Phys; 2020 Jun; 47(6):2537-2549. PubMed ID: 32175615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient fully 3-D iterative SPECT reconstruction with Monte Carlo-based scatter compensation.
    Beekman FJ; de Jong HW; van Geloven S
    IEEE Trans Med Imaging; 2002 Aug; 21(8):867-77. PubMed ID: 12472260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A New Method Based on Graphics Processing Units for Fast Near-Infrared Optical Tomography.
    Jiang J; Ahnen L; Kalyanov A; Lindner S; Wolf M; Majos SS
    Adv Exp Med Biol; 2017; 977():191-197. PubMed ID: 28685445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Monte Carlo-based brain dopamine transporter SPECT imaging.
    Kangasmaa T; Hippeläinen E; Constable C; Turunen S; Sohlberg A
    Ann Nucl Med; 2021 Jan; 35(1):17-23. PubMed ID: 32978713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-step verification method for Monte Carlo codes in biomedical optics applications.
    Sassaroli A; Tommasi F; Cavalieri S; Fini L; Liemert A; Kienle A; Binzoni T; Martelli F
    J Biomed Opt; 2022 Apr; 27(8):. PubMed ID: 35445592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiative transfer equation modeling by streamline diffusion modified continuous Galerkin method.
    Long F; Li F; Intes X; Kotha SP
    J Biomed Opt; 2016 Mar; 21(3):36003. PubMed ID: 26953662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-scattering optical tomography.
    Florescu L; Schotland JC; Markel VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036607. PubMed ID: 19392073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical study on the validity of the diffusion approximation for computational optical biopsy.
    Shen H; Cong W; Qian X; Durairaj K; Wang G
    J Opt Soc Am A Opt Image Sci Vis; 2007 Feb; 24(2):423-9. PubMed ID: 17206257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulations in anomalous radiative transfer: tutorial.
    Binzoni T; Martelli F
    J Opt Soc Am A Opt Image Sci Vis; 2022 Jun; 39(6):1053-1060. PubMed ID: 36215535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative estimation of mechanical and optical properties from ultrasound assisted optical tomography data.
    Singh MS; Rajan K; Vasu RM; Roy D
    J Biomed Opt; 2012 Oct; 17(10):101507. PubMed ID: 23223983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.