These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32798354)

  • 21. Machine learning approach for rapid and accurate estimation of optical properties using spatial frequency domain imaging.
    Panigrahi S; Gioux S
    J Biomed Opt; 2018 Dec; 24(7):1-6. PubMed ID: 30550050
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mesh-based Monte Carlo method in time-domain widefield fluorescence molecular tomography.
    Chen J; Fang Q; Intes X
    J Biomed Opt; 2012 Oct; 17(10):106009. PubMed ID: 23224008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accurate Monte Carlo simulation of frequency-domain optical coherence tomography.
    Wang Y; Bai L
    Int J Numer Method Biomed Eng; 2019 Apr; 35(4):e3177. PubMed ID: 30690893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method.
    Kumar YP; Vasu RM
    J Biomed Opt; 2004; 9(5):1002-12. PubMed ID: 15447022
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical bone densitometry robust to variation of soft tissue using machine learning techniques: validation by Monte Carlo simulation.
    Miura K; Khantachawana A; Tanaka SM
    J Biomed Opt; 2022 May; 27(5):. PubMed ID: 35585663
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A general framework for nonlinear multigrid inversion.
    Oh S; Milstein AB; Bouman CA; Webb KJ
    IEEE Trans Image Process; 2005 Jan; 14(1):125-40. PubMed ID: 15646877
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scattering of light by multiple dielectric cylinders: comparison of radiative transfer and Maxwell theory.
    Schäfer J; Kienle A
    Opt Lett; 2008 Oct; 33(20):2413-5. PubMed ID: 18923640
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative photoacoustic tomography using forward and adjoint Monte Carlo models of radiance.
    Hochuli R; Powell S; Arridge S; Cox B
    J Biomed Opt; 2016 Dec; 21(12):126004. PubMed ID: 27918801
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved accuracy in time-resolved diffuse reflectance spectroscopy.
    Alerstam E; Andersson-Engels S; Svensson T
    Opt Express; 2008 Jul; 16(14):10440-54. PubMed ID: 18607457
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of penalty terms in gradient-based iterative reconstruction schemes for optical tomography.
    Hielscher AH; Bartel S
    J Biomed Opt; 2001 Apr; 6(2):183-92. PubMed ID: 11375728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fast Monte Carlo simulations of ultrasound-modulated light using a graphics processing unit.
    Leung TS; Powell S
    J Biomed Opt; 2010; 15(5):055007. PubMed ID: 21054089
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monte Carlo method for photon heating using temperature-dependent optical properties.
    Slade AB; Aguilar G
    Comput Methods Programs Biomed; 2015 Feb; 118(2):234-41. PubMed ID: 25488656
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Monte Carlo study of the impact of phosphor optical properties on EPID imaging performance.
    Shi M; Myronakis M; Hu YH; Morf D; Rottmann J; Berbeco R
    Phys Med Biol; 2018 Aug; 63(16):165013. PubMed ID: 30051879
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physics-driven learning of x-ray skin dose distribution in interventional procedures.
    Roser P; Zhong X; Birkhold A; Strobel N; Kowarschik M; Fahrig R; Maier A
    Med Phys; 2019 Oct; 46(10):4654-4665. PubMed ID: 31407346
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Attenuation-based estimation of patient size for the purpose of size specific dose estimation in CT. Part I. Development and validation of methods using the CT image.
    Wang J; Duan X; Christner JA; Leng S; Yu L; McCollough CH
    Med Phys; 2012 Nov; 39(11):6764-71. PubMed ID: 23127070
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monte Carlo-based SPECT reconstruction within the SIMIND framework.
    Gustafsson J; Brolin G; Ljungberg M
    Phys Med Biol; 2018 Dec; 63(24):245012. PubMed ID: 30523946
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Concurrent Monte Carlo transport and fluence optimization with fluence adjusting scalable transport Monte Carlo.
    Yang YM; Svatos M; Zankowski C; Bednarz B
    Med Phys; 2016 Jun; 43(6):3034-3048. PubMed ID: 27277051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative Monte Carlo-based holmium-166 SPECT reconstruction.
    Elschot M; Smits ML; Nijsen JF; Lam MG; Zonnenberg BA; van den Bosch MA; Viergever MA; de Jong HW
    Med Phys; 2013 Nov; 40(11):112502. PubMed ID: 24320461
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gradient-based iterative image reconstruction scheme for time-resolved optical tomography.
    Hielscher AH; Klose AD; Hanson KM
    IEEE Trans Med Imaging; 1999 Mar; 18(3):262-71. PubMed ID: 10363704
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graphics processing unit-accelerated mesh-based Monte Carlo photon transport simulations.
    Fang Q; Yan S
    J Biomed Opt; 2019 Nov; 24(11):1-6. PubMed ID: 31746154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.