These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 32798593)
1. Non-destructive quantification of fragmentation within tablets after compression from scattering analysis of terahertz transmission measurements. Skelbæk-Pedersen AL; Anuschek M; Vilhelmsen TK; Rantanen J; Zeitler JA Int J Pharm; 2020 Oct; 588():119769. PubMed ID: 32798593 [TBL] [Abstract][Full Text] [Related]
2. Investigation of the effects of particle size on fragmentation during tableting. Skelbæk-Pedersen AL; Vilhelmsen TK; Wallaert V; Rantanen J Int J Pharm; 2020 Feb; 576():118985. PubMed ID: 31870957 [TBL] [Abstract][Full Text] [Related]
3. Terahertz time-domain spectroscopy for the investigation of tablets prepared from roller compacted granules. Anuschek M; Skelbæk-Pedersen AL; Kvistgaard Vilhelmsen T; Skibsted E; Zeitler JA; Rantanen J Int J Pharm; 2023 Jul; 642():123165. PubMed ID: 37356510 [TBL] [Abstract][Full Text] [Related]
4. Quantification of Fragmentation of Pharmaceutical Materials After Tableting. Skelbæk-Pedersen A; Vilhelmsen T; Wallaert V; Rantanen J J Pharm Sci; 2019 Mar; 108(3):1246-1253. PubMed ID: 30391301 [TBL] [Abstract][Full Text] [Related]
5. Effect of particle size and deformation behaviour on water ingress into tablets. Skelbæk-Pedersen AL; Al-Sharabi M; Vilhelmsen TK; Rantanen J; Zeitler JA Int J Pharm; 2020 Sep; 587():119645. PubMed ID: 32679259 [TBL] [Abstract][Full Text] [Related]
6. The relevance of granule fragmentation on reduced tabletability of granules from ductile or brittle materials produced by roll compaction/dry granulation. Skelbæk-Pedersen AL; Vilhelmsen TK; Rantanen J; Kleinebudde P Int J Pharm; 2021 Jan; 592():120035. PubMed ID: 33152477 [TBL] [Abstract][Full Text] [Related]
7. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients. Iyer RM; Hegde S; Dinunzio J; Singhal D; Malick W Pharm Dev Technol; 2014 Aug; 19(5):583-92. PubMed ID: 23941645 [TBL] [Abstract][Full Text] [Related]
8. Terahertz frequency domain sensing for fast porosity measurement of pharmaceutical tablets. Moradikouchi A; Sparén A; Folestad S; Stake J; Rodilla H Int J Pharm; 2022 Apr; 618():121579. PubMed ID: 35181461 [TBL] [Abstract][Full Text] [Related]
9. Optics-based compressibility parameter for pharmaceutical tablets obtained with the aid of the terahertz refractive index. Chakraborty M; Ridgway C; Bawuah P; Markl D; Gane PAC; Ketolainen J; Zeitler JA; Peiponen KE Int J Pharm; 2017 Jun; 525(1):85-91. PubMed ID: 28377315 [TBL] [Abstract][Full Text] [Related]
10. Development of agglomerated directly compressible diluent consisting of brittle and ductile materials. Gohel MC; Jogani PD; Bariya SE Pharm Dev Technol; 2003; 8(2):143-51. PubMed ID: 12760565 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of tableting and tablet properties of Kollidon SR: the influence of moisture and mixtures with theophylline monohydrate. Hauschild K; Picker-Freyer KM Pharm Dev Technol; 2006 Feb; 11(1):125-40. PubMed ID: 16544916 [TBL] [Abstract][Full Text] [Related]
12. Modified equation for particle bonding area and strength with inclusion of powder fragmentation propensity. Lamešić D; Planinšek O; Ilić IG Eur J Pharm Sci; 2018 Aug; 121():218-227. PubMed ID: 29857044 [TBL] [Abstract][Full Text] [Related]
13. Exploring the performance-controlling tablet disintegration mechanisms for direct compression formulations. Maclean N; Walsh E; Soundaranathan M; Khadra I; Mann J; Williams H; Markl D Int J Pharm; 2021 Apr; 599():120221. PubMed ID: 33540006 [TBL] [Abstract][Full Text] [Related]
14. Physical properties and compact analysis of commonly used direct compression binders. Zhang Y; Law Y; Chakrabarti S AAPS PharmSciTech; 2003 Dec; 4(4):E62. PubMed ID: 15198557 [TBL] [Abstract][Full Text] [Related]
15. [Simultaneous quantitative determination of multicomponents in tablets based on terahertz time-domain spectroscopy]. Chen T; Li Z; Mo W; Hu FR Guang Pu Xue Yu Guang Pu Fen Xi; 2013 May; 33(5):1220-5. PubMed ID: 23905323 [TBL] [Abstract][Full Text] [Related]
16. Studies on tableting properties of lactose. Part III. The consolidation behaviour of sieve fractions of crystalline alpha-lactose monohydrate. De Boer AH; Vromans H; Lerk CF; Bolhuis GK; Kussendrager KD; Bosch H Pharm Weekbl Sci; 1986 Apr; 8(2):145-50. PubMed ID: 3714438 [TBL] [Abstract][Full Text] [Related]
17. Fast and non-destructive pore structure analysis using terahertz time-domain spectroscopy. Markl D; Bawuah P; Ridgway C; van den Ban S; Goodwin DJ; Ketolainen J; Gane P; Peiponen KE; Zeitler JA Int J Pharm; 2018 Feb; 537(1-2):102-110. PubMed ID: 29247699 [TBL] [Abstract][Full Text] [Related]
18. Tabletting behaviour of pellets of a series of porosities--a comparisonbetween pellets of two different compositions. Nicklasson F; Johansson B; Alderborn G Eur J Pharm Sci; 1999 Apr; 8(1):11-7. PubMed ID: 10072474 [TBL] [Abstract][Full Text] [Related]
19. Comparative evaluation of tableting compression behaviors by methods of internal and external lubricant addition: inhibition of enzymatic activity of trypsin preparation by using external lubricant addition during the tableting compression process. Otsuka M; Sato M; Matsuda Y AAPS PharmSci; 2001; 3(3):E20. PubMed ID: 11741271 [TBL] [Abstract][Full Text] [Related]
20. Deformation behavior of crystallized mannitol during compression using a rotary tablet press simulator. Tarlier N; Soulairol I; Sanchez-Ballester N; Baylac G; Aubert A; Lefevre P; Bataille B; Sharkawi T Int J Pharm; 2018 Aug; 547(1-2):142-149. PubMed ID: 29777764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]