These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32798674)

  • 1. Spatiotemporal dynamics of attentional orienting and reorienting revealed by fast optical imaging in occipital and parietal cortices.
    Parisi G; Mazzi C; Colombari E; Chiarelli AM; Metzger BA; Marzi CA; Savazzi S
    Neuroimage; 2020 Nov; 222():117244. PubMed ID: 32798674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oscillatory dynamics in the dorsal and ventral attention networks during the reorienting of attention.
    Proskovec AL; Heinrichs-Graham E; Wiesman AI; McDermott TJ; Wilson TW
    Hum Brain Mapp; 2018 May; 39(5):2177-2190. PubMed ID: 29411471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deconstructing the architecture of dorsal and ventral attention systems with dynamic causal modeling.
    Vossel S; Weidner R; Driver J; Friston KJ; Fink GR
    J Neurosci; 2012 Aug; 32(31):10637-48. PubMed ID: 22855813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between voluntary and stimulus-driven spatial attention mechanisms across sensory modalities.
    Santangelo V; Olivetti Belardinelli M; Spence C; Macaluso E
    J Cogn Neurosci; 2009 Dec; 21(12):2384-97. PubMed ID: 19199406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific Visual Subregions of TPJ Mediate Reorienting of Spatial Attention.
    Dugué L; Merriam EP; Heeger DJ; Carrasco M
    Cereb Cortex; 2018 Jul; 28(7):2375-2390. PubMed ID: 28981585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural mechanisms of attentional reorienting in three-dimensional space.
    Chen Q; Weidner R; Vossel S; Weiss PH; Fink GR
    J Neurosci; 2012 Sep; 32(39):13352-62. PubMed ID: 23015426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial re-orienting of visual attention along the horizontal or the vertical axis.
    Macaluso E; Patria F
    Exp Brain Res; 2007 Jun; 180(1):23-34. PubMed ID: 17262217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An event-related FMRI study of exogenous orienting across vision and audition.
    Yang Z; Mayer AR
    Hum Brain Mapp; 2014 Mar; 35(3):964-74. PubMed ID: 23288620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nicotine modulates reorienting of visuospatial attention and neural activity in human parietal cortex.
    Thiel CM; Zilles K; Fink GR
    Neuropsychopharmacology; 2005 Apr; 30(4):810-20. PubMed ID: 15668726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task.
    Doricchi F; Macci E; Silvetti M; Macaluso E
    Cereb Cortex; 2010 Jul; 20(7):1574-85. PubMed ID: 19846472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dorsal and ventral parietal contributions to spatial orienting in the human brain.
    Chica AB; Bartolomeo P; Valero-Cabré A
    J Neurosci; 2011 Jun; 31(22):8143-9. PubMed ID: 21632936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological correlates of stimulus-driven reorienting deficits after interference with right parietal cortex during a spatial attention task: a TMS-EEG study.
    Capotosto P; Corbetta M; Romani GL; Babiloni C
    J Cogn Neurosci; 2012 Dec; 24(12):2363-71. PubMed ID: 22905824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Right temporal-parietal junction engagement during spatial reorienting does not depend on strategic attention control.
    Natale E; Marzi CA; Macaluso E
    Neuropsychologia; 2010 Mar; 48(4):1160-4. PubMed ID: 19932706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Top-down and bottom-up attentional guidance: investigating the role of the dorsal and ventral parietal cortices.
    Shomstein S; Lee J; Behrmann M
    Exp Brain Res; 2010 Oct; 206(2):197-208. PubMed ID: 20571784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential white matter involvement associated with distinct visuospatial deficits after right hemisphere stroke.
    Carter AR; McAvoy MP; Siegel JS; Hong X; Astafiev SV; Rengachary J; Zinn K; Metcalf NV; Shulman GL; Corbetta M
    Cortex; 2017 Mar; 88():81-97. PubMed ID: 28081452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visuo-spatial orienting during active exploratory behavior: Processing of task-related and stimulus-related signals.
    Macaluso E; Ogawa A
    Cortex; 2018 May; 102():26-44. PubMed ID: 28942896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Causal interactions in attention networks predict behavioral performance.
    Wen X; Yao L; Liu Y; Ding M
    J Neurosci; 2012 Jan; 32(4):1284-92. PubMed ID: 22279213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural bases of the interactions between spatial attention and conscious perception.
    Chica AB; Paz-Alonso PM; Valero-Cabré A; Bartolomeo P
    Cereb Cortex; 2013 Jun; 23(6):1269-79. PubMed ID: 22508767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex.
    Vossel S; Thiel CM; Fink GR
    Neuroimage; 2006 Sep; 32(3):1257-64. PubMed ID: 16846742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frontal-to-parietal top-down causal streams along the dorsal attention network exclusively mediate voluntary orienting of attention.
    Ozaki TJ
    PLoS One; 2011; 6(5):e20079. PubMed ID: 21611155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.