BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32798674)

  • 1. Spatiotemporal dynamics of attentional orienting and reorienting revealed by fast optical imaging in occipital and parietal cortices.
    Parisi G; Mazzi C; Colombari E; Chiarelli AM; Metzger BA; Marzi CA; Savazzi S
    Neuroimage; 2020 Nov; 222():117244. PubMed ID: 32798674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oscillatory dynamics in the dorsal and ventral attention networks during the reorienting of attention.
    Proskovec AL; Heinrichs-Graham E; Wiesman AI; McDermott TJ; Wilson TW
    Hum Brain Mapp; 2018 May; 39(5):2177-2190. PubMed ID: 29411471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deconstructing the architecture of dorsal and ventral attention systems with dynamic causal modeling.
    Vossel S; Weidner R; Driver J; Friston KJ; Fink GR
    J Neurosci; 2012 Aug; 32(31):10637-48. PubMed ID: 22855813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between voluntary and stimulus-driven spatial attention mechanisms across sensory modalities.
    Santangelo V; Olivetti Belardinelli M; Spence C; Macaluso E
    J Cogn Neurosci; 2009 Dec; 21(12):2384-97. PubMed ID: 19199406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific Visual Subregions of TPJ Mediate Reorienting of Spatial Attention.
    Dugué L; Merriam EP; Heeger DJ; Carrasco M
    Cereb Cortex; 2018 Jul; 28(7):2375-2390. PubMed ID: 28981585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural mechanisms of attentional reorienting in three-dimensional space.
    Chen Q; Weidner R; Vossel S; Weiss PH; Fink GR
    J Neurosci; 2012 Sep; 32(39):13352-62. PubMed ID: 23015426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial re-orienting of visual attention along the horizontal or the vertical axis.
    Macaluso E; Patria F
    Exp Brain Res; 2007 Jun; 180(1):23-34. PubMed ID: 17262217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An event-related FMRI study of exogenous orienting across vision and audition.
    Yang Z; Mayer AR
    Hum Brain Mapp; 2014 Mar; 35(3):964-74. PubMed ID: 23288620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nicotine modulates reorienting of visuospatial attention and neural activity in human parietal cortex.
    Thiel CM; Zilles K; Fink GR
    Neuropsychopharmacology; 2005 Apr; 30(4):810-20. PubMed ID: 15668726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task.
    Doricchi F; Macci E; Silvetti M; Macaluso E
    Cereb Cortex; 2010 Jul; 20(7):1574-85. PubMed ID: 19846472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dorsal and ventral parietal contributions to spatial orienting in the human brain.
    Chica AB; Bartolomeo P; Valero-Cabré A
    J Neurosci; 2011 Jun; 31(22):8143-9. PubMed ID: 21632936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological correlates of stimulus-driven reorienting deficits after interference with right parietal cortex during a spatial attention task: a TMS-EEG study.
    Capotosto P; Corbetta M; Romani GL; Babiloni C
    J Cogn Neurosci; 2012 Dec; 24(12):2363-71. PubMed ID: 22905824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Right temporal-parietal junction engagement during spatial reorienting does not depend on strategic attention control.
    Natale E; Marzi CA; Macaluso E
    Neuropsychologia; 2010 Mar; 48(4):1160-4. PubMed ID: 19932706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Top-down and bottom-up attentional guidance: investigating the role of the dorsal and ventral parietal cortices.
    Shomstein S; Lee J; Behrmann M
    Exp Brain Res; 2010 Oct; 206(2):197-208. PubMed ID: 20571784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential white matter involvement associated with distinct visuospatial deficits after right hemisphere stroke.
    Carter AR; McAvoy MP; Siegel JS; Hong X; Astafiev SV; Rengachary J; Zinn K; Metcalf NV; Shulman GL; Corbetta M
    Cortex; 2017 Mar; 88():81-97. PubMed ID: 28081452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visuo-spatial orienting during active exploratory behavior: Processing of task-related and stimulus-related signals.
    Macaluso E; Ogawa A
    Cortex; 2018 May; 102():26-44. PubMed ID: 28942896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Causal interactions in attention networks predict behavioral performance.
    Wen X; Yao L; Liu Y; Ding M
    J Neurosci; 2012 Jan; 32(4):1284-92. PubMed ID: 22279213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural bases of the interactions between spatial attention and conscious perception.
    Chica AB; Paz-Alonso PM; Valero-Cabré A; Bartolomeo P
    Cereb Cortex; 2013 Jun; 23(6):1269-79. PubMed ID: 22508767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex.
    Vossel S; Thiel CM; Fink GR
    Neuroimage; 2006 Sep; 32(3):1257-64. PubMed ID: 16846742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frontal-to-parietal top-down causal streams along the dorsal attention network exclusively mediate voluntary orienting of attention.
    Ozaki TJ
    PLoS One; 2011; 6(5):e20079. PubMed ID: 21611155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.