BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32798674)

  • 21. Cerebral correlates of alerting, orienting and reorienting of visuospatial attention: an event-related fMRI study.
    Thiel CM; Zilles K; Fink GR
    Neuroimage; 2004 Jan; 21(1):318-28. PubMed ID: 14741670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visuospatial reorienting signals in the human temporo-parietal junction are independent of response selection.
    Astafiev SV; Shulman GL; Corbetta M
    Eur J Neurosci; 2006 Jan; 23(2):591-6. PubMed ID: 16420468
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Orienting and maintenance of spatial attention in audition and vision: an event-related brain potential study.
    Salmi J; Rinne T; Degerman A; Alho K
    Eur J Neurosci; 2007 Jun; 25(12):3725-33. PubMed ID: 17610592
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Attentional reorientation along the meridians of the visual field: Are there different neural mechanisms at play?
    Steinkamp SR; Vossel S; Fink GR; Weidner R
    Hum Brain Mapp; 2020 Sep; 41(13):3765-3780. PubMed ID: 32525609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The dorsal attention network mediates orienting toward behaviorally relevant stimuli in spatial neglect.
    Ptak R; Schnider A
    J Neurosci; 2010 Sep; 30(38):12557-65. PubMed ID: 20861361
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Right temporoparietal junction and attentional reorienting.
    Chang CF; Hsu TY; Tseng P; Liang WK; Tzeng OJ; Hung DL; Juan CH
    Hum Brain Mapp; 2013 Apr; 34(4):869-77. PubMed ID: 22419442
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of stimulus-driven reorienting and expectation in ventral and dorsal frontoparietal and basal ganglia-cortical networks.
    Shulman GL; Astafiev SV; Franke D; Pope DL; Snyder AZ; McAvoy MP; Corbetta M
    J Neurosci; 2009 Apr; 29(14):4392-407. PubMed ID: 19357267
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of the cholinergic agonist nicotine on reorienting of visual spatial attention and top-down attentional control.
    Thiel CM; Fink GR
    Neuroscience; 2008 Mar; 152(2):381-90. PubMed ID: 18272290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Resting-state Functional Connectivity of the Right Temporoparietal Junction Relates to Belief Updating and Reorienting during Spatial Attention.
    Käsbauer AS; Mengotti P; Fink GR; Vossel S
    J Cogn Neurosci; 2020 Jun; 32(6):1130-1141. PubMed ID: 32027583
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cross-modal influences on attentional asymmetries: Additive effects of attentional orienting and arousal.
    Thomas NA; Barone AJ; Flew AH; Nicholls MER
    Neuropsychologia; 2017 Feb; 96():39-51. PubMed ID: 28063992
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Causality analysis defines neural streams of orienting and holding of attention.
    Ozaki TJ; Ogawa S
    Neuroreport; 2009 Oct; 20(15):1371-5. PubMed ID: 19730137
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Orienting attention in time activates left intraparietal sulcus for both perceptual and motor task goals.
    Davranche K; Nazarian B; Vidal F; Coull J
    J Cogn Neurosci; 2011 Nov; 23(11):3318-30. PubMed ID: 21452942
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Orienting role of the putative human posterior infero-temporal area in visual attention.
    Meng Z; Huang Y; Wang W; Zhou L; Zhou K
    Cortex; 2024 Jun; 175():54-65. PubMed ID: 38704919
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Organization of directed functional connectivity among nodes of ventral attention network reveals the common network mechanisms underlying saliency processing across distinct spatial and spatio-temporal scales.
    Ghosh P; Roy D; Banerjee A
    Neuroimage; 2021 May; 231():117869. PubMed ID: 33607279
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effective connectivity during feature-based attentional capture: evidence against the attentional reorienting hypothesis of TPJ.
    DiQuattro NE; Sawaki R; Geng JJ
    Cereb Cortex; 2014 Dec; 24(12):3131-41. PubMed ID: 23825319
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brain responses to biological relevance.
    Tipper CM; Handy TC; Giesbrecht B; Kingstone A
    J Cogn Neurosci; 2008 May; 20(5):879-91. PubMed ID: 18201123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The temporal dynamics of the effects in occipital cortex of visual-spatial selective attention.
    Woldorff MG; Liotti M; Seabolt M; Busse L; Lancaster JL; Fox PT
    Brain Res Cogn Brain Res; 2002 Dec; 15(1):1-15. PubMed ID: 12433379
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Value-driven attentional capture in neglect.
    Bourgeois A; Saj A; Vuilleumier P
    Cortex; 2018 Dec; 109():260-271. PubMed ID: 30391880
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Attentional Network Differences Between Migraineurs and Non-migraine Controls: fMRI Evidence.
    Mickleborough MJ; Ekstrand C; Gould L; Lorentz EJ; Ellchuk T; Babyn P; Borowsky R
    Brain Topogr; 2016 May; 29(3):419-28. PubMed ID: 26526045
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Response of the Left Ventral Attentional System to Invalid Targets and its Implication for the Spatial Neglect Syndrome: a Multivariate fMRI Investigation.
    Silvetti M; Lasaponara S; Lecce F; Dragone A; Macaluso E; Doricchi F
    Cereb Cortex; 2016 Dec; 26(12):4551-4562. PubMed ID: 26405052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.