These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 32798737)

  • 21. Genome-wide characterisation of the Gcn5 histone acetyltransferase in budding yeast during stress adaptation reveals evolutionarily conserved and diverged roles.
    Xue-Franzén Y; Johnsson A; Brodin D; Henriksson J; Bürglin TR; Wright AP
    BMC Genomics; 2010 Mar; 11():200. PubMed ID: 20338033
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SAGA complex and Gcn5 are necessary for respiration in budding yeast.
    Canzonetta C; Leo M; Guarino SR; Montanari A; Francisci S; Filetici P
    Biochim Biophys Acta; 2016 Dec; 1863(12):3160-3168. PubMed ID: 27741413
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GCN5-dependent histone H3 acetylation and RPD3-dependent histone H4 deacetylation have distinct, opposing effects on IME2 transcription, during meiosis and during vegetative growth, in budding yeast.
    Burgess SM; Ajimura M; Kleckner N
    Proc Natl Acad Sci U S A; 1999 Jun; 96(12):6835-40. PubMed ID: 10359799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-wide relationships between TAF1 and histone acetyltransferases in Saccharomyces cerevisiae.
    Durant M; Pugh BF
    Mol Cell Biol; 2006 Apr; 26(7):2791-802. PubMed ID: 16537921
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High throughput screening identifies modulators of histone deacetylase inhibitors.
    Gaupel AC; Begley T; Tenniswood M
    BMC Genomics; 2014 Jun; 15(1):528. PubMed ID: 24968945
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The metazoan ATAC and SAGA coactivator HAT complexes regulate different sets of inducible target genes.
    Nagy Z; Riss A; Fujiyama S; Krebs A; Orpinell M; Jansen P; Cohen A; Stunnenberg HG; Kato S; Tora L
    Cell Mol Life Sci; 2010 Feb; 67(4):611-28. PubMed ID: 19936620
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sas3 and Ada2(Gcn5)-dependent histone H3 acetylation is required for transcription elongation at the de-repressed FLO1 gene.
    Church M; Smith KC; Alhussain MM; Pennings S; Fleming AB
    Nucleic Acids Res; 2017 May; 45(8):4413-4430. PubMed ID: 28115623
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gcn5-mediated acetylation at MBF-regulated promoters induces the G1/S transcriptional wave.
    González-Medina A; Hidalgo E; Ayté J
    Nucleic Acids Res; 2019 Sep; 47(16):8439-8451. PubMed ID: 31260531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A synthetic non-histone substrate to study substrate targeting by the Gcn5 HAT and sirtuin HDACs.
    Rössl A; Denoncourt A; Lin MS; Downey M
    J Biol Chem; 2019 Apr; 294(16):6227-6239. PubMed ID: 30804216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression and purification of recombinant yeast Ada2/Ada3/Gcn5 and Piccolo NuA4 histone acetyltransferase complexes.
    Barrios A; Selleck W; Hnatkovich B; Kramer R; Sermwittayawong D; Tan S
    Methods; 2007 Mar; 41(3):271-7. PubMed ID: 17309836
    [TBL] [Abstract][Full Text] [Related]  

  • 31. What do the structures of GCN5-containing complexes teach us about their function?
    Helmlinger D; Papai G; Devys D; Tora L
    Biochim Biophys Acta Gene Regul Mech; 2021 Feb; 1864(2):194614. PubMed ID: 32739556
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalysis by protein acetyltransferase Gcn5.
    Albaugh BN; Denu JM
    Biochim Biophys Acta Gene Regul Mech; 2021 Feb; 1864(2):194627. PubMed ID: 32841743
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TFIID and Spt-Ada-Gcn5-acetyltransferase functions probed by genome-wide synthetic genetic array analysis using a Saccharomyces cerevisiae taf9-ts allele.
    Milgrom E; West RW; Gao C; Shen WC
    Genetics; 2005 Nov; 171(3):959-73. PubMed ID: 16118188
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gcn5 and Esa1 function as histone crotonyltransferases to regulate crotonylation-dependent transcription.
    Kollenstart L; de Groot AJL; Janssen GMC; Cheng X; Vreeken K; Martino F; Côté J; van Veelen PA; van Attikum H
    J Biol Chem; 2019 Dec; 294(52):20122-20134. PubMed ID: 31699900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cooperation between SAGA and SWI/SNF complexes is required for efficient transcriptional responses regulated by the yeast MAPK Slt2.
    Sanz AB; García R; Rodríguez-Peña JM; Nombela C; Arroyo J
    Nucleic Acids Res; 2016 Sep; 44(15):7159-72. PubMed ID: 27112564
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SWI/SNF binding to the HO promoter requires histone acetylation and stimulates TATA-binding protein recruitment.
    Mitra D; Parnell EJ; Landon JW; Yu Y; Stillman DJ
    Mol Cell Biol; 2006 Jun; 26(11):4095-110. PubMed ID: 16705163
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modulating acetyl-CoA binding in the GCN5 family of histone acetyltransferases.
    Langer MR; Fry CJ; Peterson CL; Denu JM
    J Biol Chem; 2002 Jul; 277(30):27337-44. PubMed ID: 11994311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation.
    Nagy Z; Tora L
    Oncogene; 2007 Aug; 26(37):5341-57. PubMed ID: 17694077
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The p23 molecular chaperone and GCN5 acetylase jointly modulate protein-DNA dynamics and open chromatin status.
    Zelin E; Zhang Y; Toogun OA; Zhong S; Freeman BC
    Mol Cell; 2012 Nov; 48(3):459-70. PubMed ID: 23022381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of a metazoan ADA acetyltransferase complex.
    Soffers JHM; Li X; Saraf A; Seidel CW; Florens L; Washburn MP; Abmayr SM; Workman JL
    Nucleic Acids Res; 2019 Apr; 47(7):3383-3394. PubMed ID: 30715476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.