These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32798815)

  • 21. Rapid quantification of the adulteration of fresh coconut water by dilution and sugars using Raman spectroscopy and chemometrics.
    Richardson PIC; Muhamadali H; Ellis DI; Goodacre R
    Food Chem; 2019 Jan; 272():157-164. PubMed ID: 30309526
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination of ethyl carbamate in cachaça produced from copper stills by HPLC.
    de Resende Machado AM; Cardoso Md; Saczk AA; dos Anjos JP; Zacaroni LM; Dórea HS; Nelson DL
    Food Chem; 2013 Jun; 138(2-3):1233-8. PubMed ID: 23411237
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An instrument-free method based on visible chemical waves for quantifying the ethanol content in alcoholic beverages.
    Somboon T; Sansuk S
    Food Chem; 2018 Jul; 253():300-304. PubMed ID: 29502836
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensitive colorimetric assay for uric acid and glucose detection based on multilayer-modified paper with smartphone as signal readout.
    Wang X; Li F; Cai Z; Liu K; Li J; Zhang B; He J
    Anal Bioanal Chem; 2018 Apr; 410(10):2647-2655. PubMed ID: 29455281
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel optical fiber reflectometric CUPRAC sensor for total antioxidant capacity measurement of food extracts and biological samples.
    Bener M; Özyürek M; Güçlü K; Apak R
    J Agric Food Chem; 2013 Sep; 61(35):8381-8. PubMed ID: 23926895
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Smartphone-based competitive immunoassay for quantitative on-site detection of meat adulteration.
    Seddaoui N; Amine A
    Talanta; 2021 Aug; 230():122346. PubMed ID: 33934795
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temporal dominance of sensations and preferences of Brazilians and Slovakians: A cross-cultural study of cachaças stored with woods from the Amazon rainforest.
    Simioni SCC; Tovar DM; Rodrigues JF; de Souza VR; Nunes CA; Vietoris V; Pinheiro ACM
    J Sci Food Agric; 2018 Aug; 98(11):4058-4064. PubMed ID: 29388681
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Artificially-aged cachaça samples characterised by direct infusion electrospray ionisation mass spectrometry.
    de Souza PP; Resende AM; Augusti DV; Badotti F; Gomes Fde C; Catharino RR; Eberlin MN; Augusti R
    Food Chem; 2014 Jan; 143():77-81. PubMed ID: 24054215
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of type of distillation apparatus on chemical profiles of brazilian cachaças.
    Reche RV; Neto AF; Silva AA; Galinaro CA; Osti RZ; Franco DW
    J Agric Food Chem; 2007 Aug; 55(16):6603-8. PubMed ID: 17629298
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A high-throughput, cheap, and green method for determination of ethanol in cachaça and vodka using 96-well-plate images.
    Filgueiras MF; de Oliveira Lima B; Borges EM
    Talanta; 2022 May; 241():123229. PubMed ID: 35085992
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analytical curve or standard addition method: how to elect and design--a strategy applied to copper determination in sugarcane spirits using AAS.
    Honorato FA; Honorato RS; Pimentel MF; Araujo MC
    Analyst; 2002 Nov; 127(11):1520-5. PubMed ID: 12475045
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Smartphone colorimetric determination of hydrogen peroxide in real samples based on B, N, and S co-doped carbon dots probe.
    Peng B; Xu J; Fan M; Guo Y; Ma Y; Zhou M; Fang Y
    Anal Bioanal Chem; 2020 Feb; 412(4):861-870. PubMed ID: 31865416
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A convenient and rapid method for detecting d-glucose in honey used smartphone.
    Ouyang J; Pu S; Chen X; Yang C; Zhang X; Li D
    Food Chem; 2020 Nov; 331():127348. PubMed ID: 32619908
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical Typification of the Sugarcane Spirits Produced in São Paulo State.
    Serafim FA; Reche RV; Franco DW
    J Food Sci; 2015 Oct; 80(10):C2200-7. PubMed ID: 26353046
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A feasible image-based colorimetric assay using a smartphone RGB camera for point-of-care monitoring of diabetes.
    Wang TT; Lio CK; Huang H; Wang RY; Zhou H; Luo P; Qing LS
    Talanta; 2020 Jan; 206():120211. PubMed ID: 31514873
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct minimally invasive enzymatic determination of tyramine in cheese using digital imaging.
    Oliver S; de Marcos S; Sanz-Vicente I; Cebolla V; Galbán J
    Anal Chim Acta; 2021 Jun; 1164():338489. PubMed ID: 33992221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative ester analysis in cachaca and distilled spirits by gas chromatography-mass spectrometry (GC-MS).
    Nascimento ES; Cardoso DR; Franco DW
    J Agric Food Chem; 2008 Jul; 56(14):5488-93. PubMed ID: 18570431
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of dextran deposits in Brazilian sugar cane spirits.
    de Aquino FW; Franco DW
    J Agric Food Chem; 2011 Aug; 59(15):8249-55. PubMed ID: 21766778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A biodegradable colorimetric film for rapid low-cost field determination of formaldehyde contamination by digital image colorimetry.
    Wongniramaikul W; Limsakul W; Choodum A
    Food Chem; 2018 May; 249():154-161. PubMed ID: 29407918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrospray ionization mass spectrometry characterization of musts and alembic Brazilian cachaças using selected yeast strains.
    Badotti F; Gomes FC; Teodoro MM; Silva AL; Rosa CA; Machado AM
    J Food Sci; 2014 Apr; 79(4):C476-83. PubMed ID: 24712492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.