These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32798883)

  • 1. On-line monitoring of repeated copper pollutions using sediment microbial fuel cell based sensors in the field environment.
    Liu L; Lu Y; Zhong W; Meng L; Deng H
    Sci Total Environ; 2020 Dec; 748():141544. PubMed ID: 32798883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The voltage signals of microbial fuel cell-based sensors positively correlated with methane emission flux in paddy fields of China.
    Wu SS; Hernández M; Deng YC; Han C; Hong X; Xu J; Zhong WH; Deng H
    FEMS Microbiol Ecol; 2019 Mar; 95(3):. PubMed ID: 30715248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil organic matter amount determines the behavior of iron and arsenic in paddy soil with microbial fuel cells.
    Gustave W; Yuan ZF; Sekar R; Ren YX; Liu JY; Zhang J; Chen Z
    Chemosphere; 2019 Dec; 237():124459. PubMed ID: 31377597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil Microbial Fuel Cell Based Self-Powered Cathodic Biosensor for Sensitive Detection of Heavy Metals.
    Wang SH; Wang JW; Zhao LT; Abbas SZ; Yang Z; Yong YC
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electricity generation from paddy soil for powering an electronic timer and an analysis of active exoelectrogenic bacteria.
    Lu Y; Liu L; Wu S; Zhong W; Xu Y; Deng H
    AMB Express; 2019 Apr; 9(1):57. PubMed ID: 31016538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigation effects of the microbial fuel cells on heavy metal accumulation in rice (Oryza sativa L.).
    Gustave W; Yuan ZF; Li X; Ren YX; Feng WJ; Shen H; Chen Z
    Environ Pollut; 2020 May; 260():113989. PubMed ID: 31991356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity of microbes and potential exoelectrogenic bacteria on anode surface in microbial fuel cells.
    Sun Y; Zuo J; Cui L; Deng Q; Dang Y
    J Gen Appl Microbiol; 2010 Feb; 56(1):19-29. PubMed ID: 20339216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of exoelectrogenic bacteria enterobacter strains isolated from a microbial fuel cell exposed to copper shock load.
    Feng C; Li J; Qin D; Chen L; Zhao F; Chen S; Hu H; Yu CP
    PLoS One; 2014; 9(11):e113379. PubMed ID: 25412475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pH and distance between electrodes on the performance of a sediment microbial fuel cell.
    Sajana TK; Ghangrekar MM; Mitra A
    Water Sci Technol; 2013; 68(3):537-43. PubMed ID: 23925180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized combination of zero-valent iron and oxygen-releasing biochar as cathodes of microbial fuel cells to enhance copper migration in sediment.
    Lin CW; Chen FY; Liu SH; Ma CY
    Bioelectrochemistry; 2024 Aug; 158():108699. PubMed ID: 38574450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced phosphorus reduction in simulated eutrophic water: a comparative study of submerged macrophytes, sediment microbial fuel cells, and their combination.
    Xu P; Xiao E; Xu D; Li J; Zhang Y; Dai Z; Zhou Q; Wu Z
    Environ Technol; 2018 May; 39(9):1144-1157. PubMed ID: 28443365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remediation of PAH polluted soils using a soil microbial fuel cell: Influence of electrode interval and role of microbial community.
    Yu B; Tian J; Feng L
    J Hazard Mater; 2017 Aug; 336():110-118. PubMed ID: 28494298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-line monitoring of minor oil spills in natural waters using sediment microbial fuel cell sensors equipped with vertical floating cathodes.
    Dai Z; Yu R; Zha X; Xu Z; Zhu G; Lu X
    Sci Total Environ; 2021 Aug; 782():146549. PubMed ID: 33839652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Batteryless, wireless sensor powered by a sediment microbial fuel cell.
    Donovan C; Dewan A; Heo D; Beyenal H
    Environ Sci Technol; 2008 Nov; 42(22):8591-6. PubMed ID: 19068853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methane emission reduction oriented extracellular electron transfer and bioremediation of sediment microbial fuel cell: A review.
    Xu C; Sun S; Li Y; Gao Y; Zhang W; Tian L; Li T; Du Q; Cai J; Zhou L
    Sci Total Environ; 2023 May; 874():162508. PubMed ID: 36863582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the power performance of sediment microbial fuel cells by novel strategies: Overlying water flow and hydraulic-driven cathode rotating.
    Guo F; Shi Z; Yang K; Wu Y; Liu H
    Sci Total Environ; 2019 Aug; 678():533-542. PubMed ID: 31078843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in soil microbial fuel cells based self-powered biosensor.
    Abbas SZ; Wang JY; Wang H; Wang JX; Wang YT; Yong YC
    Chemosphere; 2022 Sep; 303(Pt 1):135036. PubMed ID: 35609665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic mitigation in paddy soils by using microbial fuel cells.
    Gustave W; Yuan ZF; Sekar R; Chang HC; Zhang J; Wells M; Ren YX; Chen Z
    Environ Pollut; 2018 Jul; 238():647-655. PubMed ID: 29614474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrode plate-culture methods for colony isolation of exoelectrogens from anode microbiomes.
    Ueoka N; Kouzuma A; Watanabe K
    Bioelectrochemistry; 2018 Dec; 124():1-6. PubMed ID: 29990596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Anodic Community in Microbial Fuel Cells with Iron Oxide-Reducing Community.
    Yokoyama H; Ishida M; Yamashita T
    J Microbiol Biotechnol; 2016 Apr; 26(4):757-62. PubMed ID: 26767577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.