These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32798891)

  • 41. [Emergent treatment of source water contaminated by representative chemicals].
    Chen BB; Gao NY; Lu WM; Shang YB; Qin ZQ
    Huan Jing Ke Xue; 2009 Jun; 30(6):1632-8. PubMed ID: 19662842
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Removal of MIB and geosmin using granular activated carbon with and without MIEX pre-treatment.
    Drikas M; Dixon M; Morran J
    Water Res; 2009 Dec; 43(20):5151-9. PubMed ID: 19744694
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of NOM, turbidity and floc size on the PAC adsorption of MIB during alum coagulation.
    Ho L; Newcombe G
    Water Res; 2005 Sep; 39(15):3668-74. PubMed ID: 16084557
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interference of iron as a coagulant on MIB removal by powdered activated carbon adsorption for low turbidity waters.
    Seckler FF; Margarida M; Rosemeire AL
    J Environ Sci (China); 2013 Aug; 25(8):1575-82. PubMed ID: 24520695
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Submerged membrane filtration process coupled with powdered activated carbon for nonylphenol ethoxylates removal.
    Nguyen PD; Le TM; Vo TK; Nguyen PT; Vo TD; Dang BT; Son NT; Nguyen DD; Bui XT
    Water Sci Technol; 2021 Oct; 84(7):1793-1803. PubMed ID: 34662313
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simultaneous activated carbon adsorption within a membrane bioreactor for an enhanced micropollutant removal.
    Li X; Hai FI; Nghiem LD
    Bioresour Technol; 2011 May; 102(9):5319-24. PubMed ID: 21145232
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Treatment of taste and odor material by oxidation and adsorption.
    Jung SW; Baek KH; Yu MJ
    Water Sci Technol; 2004; 49(9):289-95. PubMed ID: 15237637
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison between permanganate pre-oxidation and persulfate/iron(II) enhanced coagulation as pretreatment for ceramic membrane ultrafiltration of surface water contaminated with manganese and algae.
    Qiu Y; Luo Y; Zhang T; Du X; Wang Z; Liu F; Liang H
    Environ Res; 2021 May; 196():110942. PubMed ID: 33711319
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanisms and application of the IAST-EBC model for predicting 2-MIB adsorption by PAC in authentic raw waters: Correlation between NOM competitiveness and water quality parameters.
    Ren J; Yang S; Li L; Yu S; Gao N
    J Hazard Mater; 2022 Apr; 427():127904. PubMed ID: 34895807
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Emergent treatment of source water contaminated by representative herbicide molinate and ametryn].
    Chen BB; Gao NY; Liu C; Yao JJ; Shang YB; Qin ZQ
    Huan Jing Ke Xue; 2008 Sep; 29(9):2493-500. PubMed ID: 19068632
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Removal of trace organic contaminants from wastewater by superfine powdered activated carbon (SPAC) is neither affected by SPAC dispersal nor coagulation.
    Decrey L; Bonvin F; Bonvin C; Bonvin E; Kohn T
    Water Res; 2020 Oct; 185():116302. PubMed ID: 32823197
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Micro-milling super-fine powdered activated carbon decreases adsorption capacity by introducing oxygen/hydrogen-containing functional groups on carbon surface from water.
    Takaesu H; Matsui Y; Nishimura Y; Matsushita T; Shirasaki N
    Water Res; 2019 May; 155():66-75. PubMed ID: 30831425
    [TBL] [Abstract][Full Text] [Related]  

  • 53. How to dose powdered activated carbon in deep bed filtration for efficient micropollutant removal.
    Altmann J; Ruhl AS; Sauter D; Pohl J; Jekel M
    Water Res; 2015 Jul; 78():9-17. PubMed ID: 25898248
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fate of geosmin and 2-methylisoborneol in full-scale water treatment plants.
    Zamyadi A; Henderson R; Stuetz R; Hofmann R; Ho L; Newcombe G
    Water Res; 2015 Oct; 83():171-83. PubMed ID: 26143274
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of oxidant exposure on the release of intracellular microcystin, MIB, and geosmin from three cyanobacteria species.
    Wert EC; Korak JA; Trenholm RA; Rosario-Ortiz FL
    Water Res; 2014 Apr; 52():251-9. PubMed ID: 24289950
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Powdered activated carbon-catalyzed chlorine oxidation of bisphenol-A and methylene blue: Identification of the free radical and effect of the carbon surface functional group.
    Huang X; Liang H; Xu W; Xu S; Shi B
    Sci Total Environ; 2021 Nov; 797():149020. PubMed ID: 34303236
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Removal technology of typical odorant in drinking water].
    Li Y; Chen C; Zhang XJ; Liu Y; Zhang XH; Zhu XH; Dai JS; Xu H
    Huan Jing Ke Xue; 2008 Nov; 29(11):3049-53. PubMed ID: 19186800
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Performance of dissolved organic matter removal from membrane bioreactor effluent by magnetic powdered activated carbon.
    Ittisupornrat S; Phihusut D; Kitkaew D; Sangkarak S; Phetrak A
    J Environ Manage; 2019 Oct; 248():109314. PubMed ID: 31376611
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Removal of iodide from water by chlorination and subsequent adsorption on powdered activated carbon.
    Ikari M; Matsui Y; Suzuki Y; Matsushita T; Shirasaki N
    Water Res; 2015 Jan; 68():227-37. PubMed ID: 25462731
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Degradation of metaldehyde in water by nanoparticle catalysts and powdered activated carbon.
    Li Z; Kim JK; Chaudhari V; Mayadevi S; Campos LC
    Environ Sci Pollut Res Int; 2017 Jul; 24(21):17861-17873. PubMed ID: 28612314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.