These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 32798892)

  • 1. Rising atmospheric CO
    Wang P; Ma J; Wang X; Tan Q
    Water Res; 2020 Oct; 185():116267. PubMed ID: 32798892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How rising CO
    Visser PM; Verspagen JMH; Sandrini G; Stal LJ; Matthijs HCP; Davis TW; Paerl HW; Huisman J
    Harmful Algae; 2016 Apr; 54():145-159. PubMed ID: 28073473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of the photosynthetic activity and biomass of the phytoplankton community to increasing nutrients during cyanobacterial blooms in Meiliang Bay, Lake Taihu.
    Wu P; Lu Y; Lu Y; Dai J; Huang T
    Water Environ Res; 2020 Jan; 92(1):138-148. PubMed ID: 31486194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of cyanobacterial bloom risk to nitrogen and phosphorus concentrations in large shallow lakes determined through geographical detector: A case study of Taihu Lake, China.
    Li S; Liu C; Sun P; Ni T
    Sci Total Environ; 2022 Apr; 816():151617. PubMed ID: 34798090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Analysis of Influencing Factors of Chlorophyll-a in Lake Taihu Based on Bayesian Network].
    Liu J; He YC; Deng JM; Tang XM
    Huan Jing Ke Xue; 2023 May; 44(5):2592-2600. PubMed ID: 37177933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effects of Cyanobacterial Blooms in Eutrophic Lakes on Water Quality of Connected Rivers].
    Yu ML; Hong GX; Xu H; Zhu GW; Zhu MY; Quan QM
    Huan Jing Ke Xue; 2019 Feb; 40(2):603-613. PubMed ID: 30628322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intensification of harmful cyanobacterial blooms in a eutrophic, temperate lake caused by nitrogen, temperature, and CO
    Kramer BJ; Turk-Kubo K; Zehr JP; Gobler CJ
    Sci Total Environ; 2024 Mar; 915():169885. PubMed ID: 38190910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of rising atmospheric CO
    Ma J; Wang P
    Sci Total Environ; 2021 Feb; 754():141889. PubMed ID: 32920383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu, China.
    Xu H; Paerl HW; Qin B; Zhu G; Hall NS; Wu Y
    Environ Sci Technol; 2015 Jan; 49(2):1051-9. PubMed ID: 25495555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling cyanobacterial blooms in hypertrophic Lake Taihu, China: will nitrogen reductions cause replacement of non-N2 fixing by N2 fixing taxa?
    Paerl HW; Xu H; Hall NS; Zhu G; Qin B; Wu Y; Rossignol KL; Dong L; McCarthy MJ; Joyner AR
    PLoS One; 2014; 9(11):e113123. PubMed ID: 25405474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term MODIS observations of cyanobacterial dynamics in Lake Taihu: Responses to nutrient enrichment and meteorological factors.
    Shi K; Zhang Y; Zhou Y; Liu X; Zhu G; Qin B; Gao G
    Sci Rep; 2017 Jan; 7():40326. PubMed ID: 28074871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutrient reduction magnifies the impact of extreme weather on cyanobacterial bloom formation in large shallow Lake Taihu (China).
    Yang Z; Zhang M; Shi X; Kong F; Ma R; Yu Y
    Water Res; 2016 Oct; 103():302-310. PubMed ID: 27474940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal dependence of chlorophyll a-nutrient relationships in Lake Taihu: Drivers and management implications.
    Zou W; Zhu G; Xu H; Zhu M; Zhang Y; Qin B
    J Environ Manage; 2022 Mar; 306():114476. PubMed ID: 35051816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling cyanobacterial blooms by managing nutrient ratio and limitation in a large hyper-eutrophic lake: Lake Taihu, China.
    Ma J; Qin B; Wu P; Zhou J; Niu C; Deng J; Niu H
    J Environ Sci (China); 2015 Jan; 27():80-6. PubMed ID: 25597665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Changes in Algal Particles and Their Water Quality Effects in the Outflow River of Taihu Lake].
    Guo YL; Xu H; Chen XQ; Zheng JZ; Zhan X; Zhu GW; Zhu MY
    Huan Jing Ke Xue; 2021 Jan; 42(1):242-250. PubMed ID: 33372476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal Patterns in pCO
    Xu J; Zhou Z; Chen J; Zhuo H; Ma J; Liu Y
    Int J Environ Res Public Health; 2022 Sep; 19(19):. PubMed ID: 36231452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy.
    Paerl HW; Xu H; McCarthy MJ; Zhu G; Qin B; Li Y; Gardner WS
    Water Res; 2011 Feb; 45(5):1973-83. PubMed ID: 20934736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Off-flavor compounds from decaying cyanobacterial blooms of Lake Taihu.
    Ma Z; Niu Y; Xie P; Chen J; Tao M; Deng X
    J Environ Sci (China); 2013 Mar; 25(3):495-501. PubMed ID: 23923422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyanobacteria bloom hazard function and preliminary application in lake taihu, China.
    Yan L; Xu Z; Hu Y; Wang Y; Zhou F; Gao X; Zhu Y; Chen D
    Chemosphere; 2022 Nov; 307(Pt 4):136122. PubMed ID: 36029861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental investments decreased partial pressure of CO
    Xiao Q; Duan H; Qi T; Hu Z; Liu S; Zhang M; Lee X
    Environ Pollut; 2020 Aug; 263(Pt A):114433. PubMed ID: 32222621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.