These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 32799132)
1. Influence of sandblasting and acid etching on fatigue properties of ultra-fine grained Ti grade 4 for dental implants. Fintová S; Kuběna I; Palán J; Mertová K; Duchek M; Hutař P; Pastorek F; Kunz L J Mech Behav Biomed Mater; 2020 Nov; 111():104016. PubMed ID: 32799132 [TBL] [Abstract][Full Text] [Related]
2. Fatigue properties of UFG Ti grade 2 dental implant vs. conventionally tested smooth specimens. Fintová S; Dlhý P; Mertová K; Chlup Z; Duchek M; Procházka R; Hutař P J Mech Behav Biomed Mater; 2021 Nov; 123():104715. PubMed ID: 34365095 [TBL] [Abstract][Full Text] [Related]
3. In vitro and in vivo studies of ultrafine-grain Ti as dental implant material processed by ECAP. An B; Li Z; Diao X; Xin H; Zhang Q; Jia X; Wu Y; Li K; Guo Y Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():34-41. PubMed ID: 27287096 [TBL] [Abstract][Full Text] [Related]
4. Surface modification of ultrafine-grained titanium: Influence on mechanical properties, cytocompatibility, and osseointegration potential. Pippenger BE; Rottmar M; Kopf BS; Stübinger S; Dalla Torre FH; Berner S; Maniura-Weber K Clin Oral Implants Res; 2019 Jan; 30(1):99-110. PubMed ID: 30521101 [TBL] [Abstract][Full Text] [Related]
5. Surface Characteristics and Biocompatibility of Ultrafine-Grain Ti after Sandblasting and Acid Etching for Dental Implants. Feng F; Wu Y; Xin H; Chen X; Guo Y; Qin D; An B; Diao X; Luo H ACS Biomater Sci Eng; 2019 Oct; 5(10):5107-5115. PubMed ID: 33455258 [TBL] [Abstract][Full Text] [Related]
6. Microstructure and mechanical properties of Ti-15Zr alloy used as dental implant material. Medvedev AE; Molotnikov A; Lapovok R; Zeller R; Berner S; Habersetzer P; Dalla Torre F J Mech Behav Biomed Mater; 2016 Sep; 62():384-398. PubMed ID: 27258932 [TBL] [Abstract][Full Text] [Related]
7. Effect of bulk microstructure of commercially pure titanium on surface characteristics and fatigue properties after surface modification by sand blasting and acid-etching. Medvedev AE; Ng HP; Lapovok R; Estrin Y; Lowe TC; Anumalasetty VN J Mech Behav Biomed Mater; 2016 Apr; 57():55-68. PubMed ID: 26703365 [TBL] [Abstract][Full Text] [Related]
8. Combined severe plastic deformation processing of commercial purity titanium enables superior fatigue resistance for next generation implants. Kopp A; Werner J; Kröger N; Weirich TE; D'Elia F Biomater Adv; 2024 Feb; 157():213756. PubMed ID: 38211508 [TBL] [Abstract][Full Text] [Related]
9. Mechanical properties and biocompatibility of titanium with a high oxygen concentration for dental implants. Luo H; Wu Y; Diao X; Shi W; Feng F; Qian F; Umeda J; Kondoh K; Xin H; Shen J Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111306. PubMed ID: 32919667 [TBL] [Abstract][Full Text] [Related]
10. Influence of the height of the external hexagon and surface treatment on fatigue life of commercially pure titanium dental implants. Gil FJ; Aparicio C; Manero JM; Padros A Int J Oral Maxillofac Implants; 2009; 24(4):583-90. PubMed ID: 19885397 [TBL] [Abstract][Full Text] [Related]
11. The effect of post-sintering heat treatments on the fatigue properties of porous coated Ti-6Al-4V alloy. Cook SD; Thongpreda N; Anderson RC; Haddad RJ J Biomed Mater Res; 1988 Apr; 22(4):287-302. PubMed ID: 3372550 [TBL] [Abstract][Full Text] [Related]
12. Processing of an ultrafine-grained titanium by high-pressure torsion: an evaluation of the wear properties with and without a TiN coating. Wang CT; Gao N; Gee MG; Wood RJ; Langdon TG J Mech Behav Biomed Mater; 2013 Jan; 17():166-75. PubMed ID: 23140675 [TBL] [Abstract][Full Text] [Related]
13. Influence of grade and surface topography of commercially pure titanium on fatigue properties. Suzuki K; Takano T; Takemoto S; Ueda T; Yoshinari M; Sakurai K Dent Mater J; 2018 Mar; 37(2):308-316. PubMed ID: 28954943 [TBL] [Abstract][Full Text] [Related]
14. Mechanical properties, surface morphology and stability of a modified commercially pure high strength titanium alloy for dental implants. Elias CN; Fernandes DJ; Resende CR; Roestel J Dent Mater; 2015 Feb; 31(2):e1-e13. PubMed ID: 25458351 [TBL] [Abstract][Full Text] [Related]
15. Fracture Strength and Osseointegration of an Ultrafine-Grained Titanium Mini Dental Implant after Macromorphology Optimization. Wu Y; Feng F; Xin H; Li K; Tang Z; Guo Y; Qin D; An B; Diao X; Dou C ACS Biomater Sci Eng; 2019 Aug; 5(8):4122-4130. PubMed ID: 33448813 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of oral microbial corrosion on the surface degradation of dental implant materials. Siddiqui DA; Guida L; Sridhar S; Valderrama P; Wilson TG; Rodrigues DC J Periodontol; 2019 Jan; 90(1):72-81. PubMed ID: 30102765 [TBL] [Abstract][Full Text] [Related]
17. Superior Pre-Osteoblast Cell Response of Etched Ultrafine-Grained Titanium with a Controlled Crystallographic Orientation. Baek SM; Shin MH; Moon J; Jung HS; Lee SA; Hwang W; Yeom JT; Hahn SK; Kim HS Sci Rep; 2017 Mar; 7():44213. PubMed ID: 28266643 [TBL] [Abstract][Full Text] [Related]
18. Gentamicin-Eluting Titanium Dioxide Nanotubes Grown on the Ultrafine-Grained Titanium. Nemati SH; Hadjizadeh A AAPS PharmSciTech; 2017 Aug; 18(6):2180-2187. PubMed ID: 28063103 [TBL] [Abstract][Full Text] [Related]
19. Response of human bone marrow stromal cells to a novel ultra-fine-grained and dispersion-strengthened titanium-based material. Despang F; Bernhardt A; Lode A; Hanke T; Handtrack D; Kieback B; Gelinsky M Acta Biomater; 2010 Mar; 6(3):1006-13. PubMed ID: 19800426 [TBL] [Abstract][Full Text] [Related]
20. In vitro fibroblast response to ultra fine grained titanium produced by a severe plastic deformation process. Kim TN; Balakrishnan A; Lee BC; Kim WS; Dvorankova B; Smetana K; Park JK; Panigrahi BB J Mater Sci Mater Med; 2008 Feb; 19(2):553-7. PubMed ID: 17619956 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]