These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32799218)

  • 41. Solution structure, mechanism of replication, and optimization of an unnatural base pair.
    Malyshev DA; Pfaff DA; Ippoliti SI; Hwang GT; Dwyer TJ; Romesberg FE
    Chemistry; 2010 Nov; 16(42):12650-9. PubMed ID: 20859962
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DNA Aptamer Generation by Genetic Alphabet Expansion SELEX (ExSELEX) Using an Unnatural Base Pair System.
    Kimoto M; Matsunaga K; Hirao I
    Methods Mol Biol; 2016; 1380():47-60. PubMed ID: 26552815
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimization of interstrand hydrophobic packing interactions within unnatural DNA base pairs.
    Matsuda S; Romesberg FE
    J Am Chem Soc; 2004 Nov; 126(44):14419-27. PubMed ID: 15521761
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced Stability of DNA Nanostructures by Incorporation of Unnatural Base Pairs.
    Liu Q; Liu G; Wang T; Fu J; Li R; Song L; Wang ZG; Ding B; Chen F
    Chemphyschem; 2017 Nov; 18(21):2977-2980. PubMed ID: 28856771
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Major groove derivatization of an unnatural base pair.
    Seo YJ; Romesberg FE
    Chembiochem; 2009 Sep; 10(14):2394-400. PubMed ID: 19722235
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unnatural base pairs between 2-amino-6-(2-thienyl)purine and the complementary bases.
    Hirao I; Fujiwara T; Kimoto M; Mitsui T; Okuni T; Ohtsuki T; Yokoyama S
    Nucleic Acids Symp Ser; 2000; (44):261-2. PubMed ID: 12903368
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Towards the replication of xDNA, a size-expanded unnatural genetic system.
    Krueger AT; Lu H; Højland T; Liu H; Gao J; Kool ET
    Nucleic Acids Symp Ser (Oxf); 2008; (52):455-6. PubMed ID: 18776450
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Factors determining the deriving force of DNA formation: geometrical differences of base pairs, dehydration of bases, and the arginine assisting.
    Sun L; Cukier RI; Bu Y
    J Phys Chem B; 2007 Feb; 111(7):1802-8. PubMed ID: 17266349
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unnatural base pairs for specific transcription.
    Ohtsuki T; Kimoto M; Ishikawa M; Mitsui T; Hirao I; Yokoyama S
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4922-5. PubMed ID: 11320242
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Accurate Base Pair Energies of Artificially Expanded Genetic Information Systems (AEGIS): Clues for Their Mutagenic Characteristics.
    Behera B; Das P; Jena NR
    J Phys Chem B; 2019 Aug; 123(31):6728-6739. PubMed ID: 31290661
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 2-Thiouracil deprived of thiocarbonyl function preferentially base pairs with guanine rather than adenine in RNA and DNA duplexes.
    Sochacka E; Szczepanowski RH; Cypryk M; Sobczak M; Janicka M; Kraszewska K; Bartos P; Chwialkowska A; Nawrot B
    Nucleic Acids Res; 2015 Mar; 43(5):2499-512. PubMed ID: 25690900
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Progress Toward a Semi-Synthetic Organism with an Unrestricted Expanded Genetic Alphabet.
    Dien VT; Holcomb M; Feldman AW; Fischer EC; Dwyer TJ; Romesberg FE
    J Am Chem Soc; 2018 Nov; 140(47):16115-16123. PubMed ID: 30418780
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transcription and Reverse Transcription of an Expanded Genetic Alphabet In Vitro and in a Semisynthetic Organism.
    Zhou AX; Dong X; Romesberg FE
    J Am Chem Soc; 2020 Nov; 142(45):19029-19032. PubMed ID: 33118814
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson-Crick base pairs.
    Takezawa Y; Shionoya M
    Acc Chem Res; 2012 Dec; 45(12):2066-76. PubMed ID: 22452649
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Creation of unnatural base pairs: the expansion of the genetic code].
    Hirao I; Yokoyama S
    Tanpakushitsu Kakusan Koso; 2002 Nov; 47(14):1904-13. PubMed ID: 12428374
    [No Abstract]   [Full Text] [Related]  

  • 56. The Structural Basis for Processing of Unnatural Base Pairs by DNA Polymerases.
    Marx A; Betz K
    Chemistry; 2020 Mar; 26(16):3446-3463. PubMed ID: 31544987
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural Properties of Hachimoji Nucleic Acids and Their Building Blocks: Comparison of Genetic Systems with Four, Six and Eight Alphabets.
    Negi I; Singh B; Singh Mahmi A; Sharma P
    Chemphyschem; 2023 Mar; 24(5):e202200714. PubMed ID: 36315394
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies.
    Chawla M; Oliva R; Bujnicki JM; Cavallo L
    Nucleic Acids Res; 2015 Aug; 43(14):6714-29. PubMed ID: 26117545
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Site-specific polymerase incorporation of consecutive ligand-containing nucleotides for multiple metal-mediated base pairing.
    Nakama T; Takezawa Y; Shionoya M
    Chem Commun (Camb); 2021 Feb; 57(11):1392-1395. PubMed ID: 33438690
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Theoretical description of the coding potential of diamino-5-formamidopyrimidines.
    Cysewski P; Oliński R
    Z Naturforsch C J Biosci; 1999; 54(3-4):239-45. PubMed ID: 10349742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.