These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 32799535)

  • 1. Temperature-Induced Aggregation in Portlandite Suspensions.
    Bhagavathi Kandy S; Mehdipour I; Neithalath N; Bauchy M; Garboczi E; Srivastava S; Gaedt T; Sant G
    Langmuir; 2020 Sep; 36(36):10811-10821. PubMed ID: 32799535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dispersing nano- and micro-sized portlandite particulates via electrosteric exclusion at short screening lengths.
    Timmons J; Mehdipour I; Gao S; Atahan H; Neithalath N; Bauchy M; Garboczi E; Srivastava S; Sant G
    Soft Matter; 2020 Apr; 16(14):3425-3435. PubMed ID: 32196056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action of hydroxyethyl starch on the flow properties of human erythrocyte suspensions.
    Corry WD; Jackson LJ; Seaman GV
    Biorheology; 1983; 20(5):705-17. PubMed ID: 6203575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear rheology of hard-sphere, dispersed, and aggregated suspensions, and filler-matrix composites.
    Genovese DB
    Adv Colloid Interface Sci; 2012; 171-172():1-16. PubMed ID: 22304831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructure and rheology of lime putty.
    Ruiz-Agudo E; Rodriguez-Navarro C
    Langmuir; 2010 Mar; 26(6):3868-77. PubMed ID: 19916534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning rheology and aggregation behaviour of TEMPO-oxidised cellulose nanofibrils aqueous suspensions by addition of different acids.
    Alves L; Ferraz E; Lourenço AF; Ferreira PJ; Rasteiro MG; Gamelas JAF
    Carbohydr Polym; 2020 Jun; 237():116109. PubMed ID: 32241451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Aggregation and Gelation of Thermoresponsive Suspensions of Polymer-Grafted Cellulose Nanocrystals.
    Azzam F; Siqueira E; Fort S; Hassaini R; Pignon F; Travelet C; Putaux JL; Jean B
    Biomacromolecules; 2016 Jun; 17(6):2112-9. PubMed ID: 27116589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interparticle interactions in concentrated suspensions and their bulk (rheological) properties.
    Tadros T
    Adv Colloid Interface Sci; 2011 Oct; 168(1-2):263-77. PubMed ID: 21632031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlating inter-particle forces and particle shape to shear-induced aggregation/fragmentation and rheology for dilute anisotropic particle suspensions: A complementary study via capillary rheometry and in-situ small and ultra-small angle X-ray scattering.
    Krzysko AJ; Nakouzi E; Zhang X; Graham TR; Rosso KM; Schenter GK; Ilavsky J; Kuzmenko I; Frith MG; Ivory CF; Clark SB; Weston JS; Weigandt KM; De Yoreo JJ; Chun J; Anovitz LM
    J Colloid Interface Sci; 2020 Sep; 576():47-58. PubMed ID: 32413780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pH on deagglomeration and rheology/morphology of aqueous suspensions of goethite nanopowder.
    Ding P; Pacek AW
    J Colloid Interface Sci; 2008 Sep; 325(1):165-72. PubMed ID: 18571662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rheology of nanocrystalline cellulose aqueous suspensions.
    Shafiei-Sabet S; Hamad WY; Hatzikiriakos SG
    Langmuir; 2012 Dec; 28(49):17124-33. PubMed ID: 23146090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origins of microstructural transformations in charged vesicle suspensions: the crowding hypothesis.
    Seth M; Ramachandran A; Murch BP; Leal LG
    Langmuir; 2014 Sep; 30(34):10176-87. PubMed ID: 24467607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric permittivity of concentrated suspensions of elongated goethite particles.
    Rica RA; Jiménez ML; Delgado AV
    J Colloid Interface Sci; 2010 Mar; 343(2):564-73. PubMed ID: 20044095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat-induced phenomena in soy protein suspensions. Rheometric data and theoretical interpretation.
    Berli CL; Deiber JA; Añón MC
    J Agric Food Chem; 1999 Mar; 47(3):893-900. PubMed ID: 10552388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of the magnetorheological response of aqueous magnetite suspensions stabilized by acrylic acid polymers.
    Viota JL; Delgado AV; Arias JL; Durán JD
    J Colloid Interface Sci; 2008 Aug; 324(1-2):199-204. PubMed ID: 18533174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpreting rheology and electrical conductivity: It all boils down to which particle size.
    Cruz RCD; Segadães AM; Mantas PQ; Oberacker R; Hoffmann MJ
    J Colloid Interface Sci; 2020 Aug; 574():97-109. PubMed ID: 32305732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood modeling using polystyrene microspheres.
    Fukada E; Seaman GV; Liepsch D; Lee M; Friis-Baastad L
    Biorheology; 1989; 26(2):401-13. PubMed ID: 2481519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheological study of two-dimensional very anisometric colloidal particle suspensions: from shear-induced orientation to viscous dissipation.
    Philippe AM; Baravian C; Bezuglyy V; Angilella JR; Meneau F; Bihannic I; Michot LJ
    Langmuir; 2013 Apr; 29(17):5315-24. PubMed ID: 23544905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of surface geometry and morphic features on the flow characteristics of microsphere suspensions.
    Ramadan MA; Tawashi R
    J Pharm Sci; 1990 Oct; 79(10):929-33. PubMed ID: 2280365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of pH, cation valence, and ionic strength in the stability and aggregation behavior of zinc oxide nanoparticles.
    Wang X; Sun T; Zhu H; Han T; Wang J; Dai H
    J Environ Manage; 2020 Aug; 267():110656. PubMed ID: 32349960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.