These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
435 related articles for article (PubMed ID: 32799606)
1. Engineered Cunha JT; Soares PO; Baptista SL; Costa CE; Domingues L Bioengineered; 2020 Dec; 11(1):883-903. PubMed ID: 32799606 [TBL] [Abstract][Full Text] [Related]
2. Engineering of Saccharomyces cerevisiae as a consolidated bioprocessing host to produce cellulosic ethanol: Recent advancements and current challenges. Sharma J; Kumar V; Prasad R; Gaur NA Biotechnol Adv; 2022; 56():107925. PubMed ID: 35151789 [TBL] [Abstract][Full Text] [Related]
3. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Hasunuma T; Kondo A Biotechnol Adv; 2012; 30(6):1207-18. PubMed ID: 22085593 [TBL] [Abstract][Full Text] [Related]
4. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway. Ko JK; Um Y; Woo HM; Kim KH; Lee SM Bioresour Technol; 2016 Jun; 209():290-6. PubMed ID: 26990396 [TBL] [Abstract][Full Text] [Related]
5. Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals. Sànchez Nogué V; Karhumaa K Biotechnol Lett; 2015 Apr; 37(4):761-72. PubMed ID: 25522734 [TBL] [Abstract][Full Text] [Related]
6. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Matsushika A; Inoue H; Kodaki T; Sawayama S Appl Microbiol Biotechnol; 2009 Aug; 84(1):37-53. PubMed ID: 19572128 [TBL] [Abstract][Full Text] [Related]
7. Interdependence between lignocellulosic biomasses, enzymatic hydrolysis and yeast cell factories in biorefineries. Bertacchi S; Jayaprakash P; Morrissey JP; Branduardi P Microb Biotechnol; 2022 Mar; 15(3):985-995. PubMed ID: 34289233 [TBL] [Abstract][Full Text] [Related]
8. Multi-feedstock biorefinery concept: Valorization of winery wastes by engineered yeast. Baptista SL; Romaní A; Cunha JT; Domingues L J Environ Manage; 2023 Jan; 326(Pt A):116623. PubMed ID: 36368200 [TBL] [Abstract][Full Text] [Related]
9. Current state-of-the-art in ethanol production from lignocellulosic feedstocks. Robak K; Balcerek M Microbiol Res; 2020 Nov; 240():126534. PubMed ID: 32683278 [TBL] [Abstract][Full Text] [Related]
10. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae. Madhavan A; Srivastava A; Kondo A; Bisaria VS Crit Rev Biotechnol; 2012 Mar; 32(1):22-48. PubMed ID: 21204601 [TBL] [Abstract][Full Text] [Related]
11. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. Hasunuma T; Ismail KSK; Nambu Y; Kondo A J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856 [TBL] [Abstract][Full Text] [Related]
12. Consolidated bioprocessing for bioethanol production by metabolically engineered Bacillus subtilis strains. Maleki F; Changizian M; Zolfaghari N; Rajaei S; Noghabi KA; Zahiri HS Sci Rep; 2021 Jul; 11(1):13731. PubMed ID: 34215768 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform. Wei N; Oh EJ; Million G; Cate JH; Jin YS ACS Synth Biol; 2015 Jun; 4(6):707-13. PubMed ID: 25587748 [TBL] [Abstract][Full Text] [Related]
14. Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol--a review. Laluce C; Schenberg AC; Gallardo JC; Coradello LF; Pombeiro-Sponchiado SR Appl Biochem Biotechnol; 2012 Apr; 166(8):1908-26. PubMed ID: 22391693 [TBL] [Abstract][Full Text] [Related]
15. Engineering grass biomass for sustainable and enhanced bioethanol production. Mohapatra S; Mishra SS; Bhalla P; Thatoi H Planta; 2019 Aug; 250(2):395-412. PubMed ID: 31236698 [TBL] [Abstract][Full Text] [Related]
16. Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates. Baptista SL; Costa CE; Cunha JT; Soares PO; Domingues L Biotechnol Adv; 2021; 47():107697. PubMed ID: 33508428 [TBL] [Abstract][Full Text] [Related]
17. Consolidated bioprocessing of corn cob-derived hemicellulose: engineered industrial Cunha JT; Romaní A; Inokuma K; Johansson B; Hasunuma T; Kondo A; Domingues L Biotechnol Biofuels; 2020; 13():138. PubMed ID: 32782474 [TBL] [Abstract][Full Text] [Related]
18. Xylose utilization in Saccharomyces cerevisiae during conversion of hydrothermally pretreated lignocellulosic biomass to ethanol. Park H; Jeong D; Shin M; Kwak S; Oh EJ; Ko JK; Kim SR Appl Microbiol Biotechnol; 2020 Apr; 104(8):3245-3252. PubMed ID: 32076775 [TBL] [Abstract][Full Text] [Related]
19. Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates. Lopes DD; Rosa CA; Hector RE; Dien BS; Mertens JA; Ayub MAZ J Ind Microbiol Biotechnol; 2017 Nov; 44(11):1575-1588. PubMed ID: 28891041 [TBL] [Abstract][Full Text] [Related]
20. Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments. Choudhary J; Singh S; Nain L J Biosci Bioeng; 2017 Mar; 123(3):342-346. PubMed ID: 27856231 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]