BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 32799765)

  • 1. Additively Manufactured Tantalum Implants for Repairing Bone Defects: A Systematic Review.
    Qian H; Lei T; Lei P; Hu Y
    Tissue Eng Part B Rev; 2021 Apr; 27(2):166-180. PubMed ID: 32799765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants.
    Melancon D; Bagheri ZS; Johnston RB; Liu L; Tanzer M; Pasini D
    Acta Biomater; 2017 Nov; 63():350-368. PubMed ID: 28927929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Additive Manufacturing of Bioceramic Implants for Restoration Bone Engineering: Technologies, Advances, and Future Perspectives.
    Zhou Q; Su X; Wu J; Zhang X; Su R; Ma L; Sun Q; He R
    ACS Biomater Sci Eng; 2023 Mar; 9(3):1164-1189. PubMed ID: 36786214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Additively manufactured porous tantalum implants.
    Wauthle R; van der Stok J; Amin Yavari S; Van Humbeeck J; Kruth JP; Zadpoor AA; Weinans H; Mulier M; Schrooten J
    Acta Biomater; 2015 Mar; 14():217-25. PubMed ID: 25500631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress of research on the surface functionalization of tantalum and porous tantalum in bone tissue engineering.
    Li X; Zhu L; Che Z; Liu T; Yang C; Huang L
    Biomed Mater; 2024 Jun; 19(4):. PubMed ID: 38838694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing.
    Wauthle R; Ahmadi SM; Amin Yavari S; Mulier M; Zadpoor AA; Weinans H; Van Humbeeck J; Kruth JP; Schrooten J
    Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():94-100. PubMed ID: 26046272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How does tissue regeneration influence the mechanical behavior of additively manufactured porous biomaterials?
    Hedayati R; Janbaz S; Sadighi M; Mohammadi-Aghdam M; Zadpoor AA
    J Mech Behav Biomed Mater; 2017 Jan; 65():831-841. PubMed ID: 27810729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Additively manufactured biodegradable porous iron.
    Li Y; Jahr H; Lietaert K; Pavanram P; Yilmaz A; Fockaert LI; Leeflang MA; Pouran B; Gonzalez-Garcia Y; Weinans H; Mol JMC; Zhou J; Zadpoor AA
    Acta Biomater; 2018 Sep; 77():380-393. PubMed ID: 29981948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications.
    Carluccio D; Xu C; Venezuela J; Cao Y; Kent D; Bermingham M; Demir AG; Previtali B; Ye Q; Dargusch M
    Acta Biomater; 2020 Feb; 103():346-360. PubMed ID: 31862424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure, properties, and bioactivity of 3D printed PAEKs for implant applications: A systematic review.
    Basgul C; Spece H; Sharma N; Thieringer FM; Kurtz SM
    J Biomed Mater Res B Appl Biomater; 2021 Nov; 109(11):1924-1941. PubMed ID: 33856114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous tantalum in hip and knee reconstructive surgery.
    Patil N; Lee K; Goodman SB
    J Biomed Mater Res B Appl Biomater; 2009 Apr; 89(1):242-51. PubMed ID: 18837451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research progress and clinical translation of three-dimensional printed porous tantalum in orthopaedics.
    Ying J; Yu H; Cheng L; Li J; Wu B; Song L; Yi P; Wang H; Liu L; Zhao D
    Biomater Transl; 2023; 4(3):166-179. PubMed ID: 38283089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the mechanical compatibility of additively manufactured porous Ti-25Ta alloy for load-bearing implant applications.
    Soro N; Attar H; Brodie E; Veidt M; Molotnikov A; Dargusch MS
    J Mech Behav Biomed Mater; 2019 Sep; 97():149-158. PubMed ID: 31121433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Additively manufactured biodegradable porous magnesium.
    Li Y; Zhou J; Pavanram P; Leeflang MA; Fockaert LI; Pouran B; Tümer N; Schröder KU; Mol JMC; Weinans H; Jahr H; Zadpoor AA
    Acta Biomater; 2018 Feb; 67():378-392. PubMed ID: 29242158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D-printed porous tantalum: recent application in various drug delivery systems to repair hard tissue defects.
    Hua L; Lei T; Qian H; Zhang Y; Hu Y; Lei P
    Expert Opin Drug Deliv; 2021 May; 18(5):625-634. PubMed ID: 33270470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Application of porous tantalum implant in treatment of bone defect].
    Lu J; Zheng X; Wang Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Feb; 26(2):244-7. PubMed ID: 22403896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesenchymal stem cell-seeded porous tantalum-based biomaterial: A promising choice for promoting bone regeneration.
    Zhou Z; Liu D
    Colloids Surf B Biointerfaces; 2022 Jul; 215():112491. PubMed ID: 35405535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Static Compressive Behavior and Material Failure Mechanism of Trabecular Tantalum Scaffolds Fabricated by Laser Powder Bed Fusion-based Additive Manufacturing.
    Yang J; Gao H; Zhang D; Jin X; Zhang F; Zhang S; Chen H; Li X
    Int J Bioprint; 2022; 8(1):438. PubMed ID: 35187276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Additively manufactured biodegradable porous metals.
    Li Y; Jahr H; Zhou J; Zadpoor AA
    Acta Biomater; 2020 Oct; 115():29-50. PubMed ID: 32853809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous tantalum coatings prepared by vacuum plasma spraying enhance bmscs osteogenic differentiation and bone regeneration in vitro and in vivo.
    Tang Z; Xie Y; Yang F; Huang Y; Wang C; Dai K; Zheng X; Zhang X
    PLoS One; 2013; 8(6):e66263. PubMed ID: 23776648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.