These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 3280017)
1. DNA binding domain of Escherichia coli DNA polymerase I: identification of arginine-841 as an essential residue. Mohan PM; Basu A; Basu S; Abraham KI; Modak MJ Biochemistry; 1988 Jan; 27(1):226-33. PubMed ID: 3280017 [TBL] [Abstract][Full Text] [Related]
2. Photoaffinity labeling of the thymidine triphosphate binding domain in Escherichia coli DNA polymerase I: identification of histidine-881 as the site of cross-linking. Pandey VN; Williams KR; Stone KL; Modak MJ Biochemistry; 1987 Dec; 26(24):7744-8. PubMed ID: 3322406 [TBL] [Abstract][Full Text] [Related]
3. Affinity labeling of Escherichia coli DNA polymerase I by 5'-fluorosulfonylbenzoyladenosine. Identification of the domain essential for polymerization and Arg-682 as the site of reactivity. Pandey VN; Modak MJ J Biol Chem; 1988 May; 263(13):6068-73. PubMed ID: 3283117 [TBL] [Abstract][Full Text] [Related]
4. Template primer-dependent binding of 5'-fluorosulfonyl-benzoyldeoxyadenosine by Escherichia coli DNA polymerase I. Identification of arginine 682 as the binding site and its implication in catalysis. Pandey VN; Kaushik NA; Pradhan DS; Modak MJ J Biol Chem; 1990 Mar; 265(7):3679-84. PubMed ID: 2406260 [TBL] [Abstract][Full Text] [Related]
5. Identification and amino acid sequence of the deoxynucleoside triphosphate binding site in Escherichia coli DNA polymerase I. Basu A; Modak MJ Biochemistry; 1987 Mar; 26(6):1704-9. PubMed ID: 3297133 [TBL] [Abstract][Full Text] [Related]
6. Ferrate oxidation of Escherichia coli DNA polymerase-I. Identification of a methionine residue that is essential for DNA binding. Basu A; Williams KR; Modak MJ J Biol Chem; 1987 Jul; 262(20):9601-7. PubMed ID: 3298259 [TBL] [Abstract][Full Text] [Related]
7. Lysine-329 of murine leukemia virus reverse transcriptase: possible involvement in the template-primer binding function. Nanduri VB; Modak MJ Biochemistry; 1990 Jun; 29(22):5258-64. PubMed ID: 1696496 [TBL] [Abstract][Full Text] [Related]
8. DNA polymerase photoprobe 2-[(4-azidophenacyl)thio]-2'-deoxyadenosine 5'-triphosphate labels an Escherichia coli DNA polymerase I Klenow fragment substrate binding site. Moore BM; Jalluri RK; Doughty MB Biochemistry; 1996 Sep; 35(36):11642-51. PubMed ID: 8794744 [TBL] [Abstract][Full Text] [Related]
9. Evidence for an arginine residue at the substrate binding site of Escherichia coli adenylosuccinate synthetase as studied by chemical modification and site-directed mutagenesis. Dong Q; Liu F; Myers AM; Fromm HJ J Biol Chem; 1991 Jul; 266(19):12228-33. PubMed ID: 2061308 [TBL] [Abstract][Full Text] [Related]
10. Active-site modification of mammalian DNA polymerase beta with pyridoxal 5'-phosphate: mechanism of inhibition and identification of lysine 71 in the deoxynucleoside triphosphate binding pocket. Basu A; Kedar P; Wilson SH; Modak MJ Biochemistry; 1989 Jul; 28(15):6305-9. PubMed ID: 2506925 [TBL] [Abstract][Full Text] [Related]
11. Site directed mutagenesis of DNA polymerase I (Klenow) from Escherichia coli. The significance of Arg682 in catalysis. Pandey VN; Kaushik N; Sanzgiri RP; Patil MS; Modak MJ; Barik S Eur J Biochem; 1993 May; 214(1):59-65. PubMed ID: 8508807 [TBL] [Abstract][Full Text] [Related]
12. Photoaffinity labeling of DNA template-primer binding site in Escherichia coli DNA polymerase I. Identification of involved amino acids. Pandey VN; Kaushik N; Modak MJ J Biol Chem; 1994 Aug; 269(34):21828-34. PubMed ID: 8063826 [TBL] [Abstract][Full Text] [Related]
13. NMR studies of the active site of DNA polymerase I and of a 50-residue peptide fragment of the enzyme. Mullen GP; Vaughn JB; Shenbagamurthi P; Mildvan AS Biochem Pharmacol; 1990 Jul; 40(1):69-81. PubMed ID: 2196883 [TBL] [Abstract][Full Text] [Related]
14. Phe 771 of Escherichia coli DNA polymerase I (Klenow fragment) is the major site for the interaction with the template overhang and the stabilization of the pre-polymerase ternary complex. Srivastava A; Singh K; Modak MJ Biochemistry; 2003 Apr; 42(13):3645-54. PubMed ID: 12667054 [TBL] [Abstract][Full Text] [Related]
15. [Klenow fragment of DNA-polymerase I from E. coli. III. The role of internucleotide phosphate groups of the matrix in its binding with the enzyme]. Volchkova VA; Gorn VV; Kolocheva TI; Lavrik OI; Levina AS Bioorg Khim; 1989 Jan; 15(1):78-89. PubMed ID: 2662977 [TBL] [Abstract][Full Text] [Related]
16. Contribution of polar residues of the J-helix in the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): Q677 regulates the removal of terminal mismatch. Singh K; Modak MJ Biochemistry; 2005 Jun; 44(22):8101-10. PubMed ID: 15924429 [TBL] [Abstract][Full Text] [Related]
17. Substrate and DNA binding to a 50-residue peptide fragment of DNA polymerase I. Comparison with the enzyme. Mullen GP; Shenbagamurthi P; Mildvan AS J Biol Chem; 1989 Nov; 264(33):19637-47. PubMed ID: 2684960 [TBL] [Abstract][Full Text] [Related]
19. Sulphydryl groups in the template-primer-binding domain of murine leukaemia virus reverse transcriptase. Identification and functional analysis of cysteine-90. Basu S; Basu A; Modak MJ Biochem J; 1993 Dec; 296 ( Pt 3)(Pt 3):577-83. PubMed ID: 7506526 [TBL] [Abstract][Full Text] [Related]
20. A domain of the Klenow fragment of Escherichia coli DNA polymerase I has polymerase but no exonuclease activity. Freemont PS; Ollis DL; Steitz TA; Joyce CM Proteins; 1986 Sep; 1(1):66-73. PubMed ID: 3329725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]