These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32800220)

  • 1. In vitro toxicity of isolated strains and cyanobacterial bloom biomasses over Paramecium caudatum (ciliophora): Lessons from a non-metazoan model organism.
    Boas LDAV; Senra MVX; Fernandes K; Gomes AMDA; Pedroso Dias RJ; Pinto E; Fonseca AL
    Ecotoxicol Environ Saf; 2020 Oct; 202():110937. PubMed ID: 32800220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicological impacts and likely protein targets of bisphenol a in Paramecium caudatum.
    Senra MVX; Fonseca AL
    Eur J Protistol; 2023 Apr; 88():125958. PubMed ID: 36857848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute, chronic and reproductive toxicity of complex cyanobacterial blooms in Daphnia magna and the role of microcystins.
    Smutná M; Babica P; Jarque S; Hilscherová K; Maršálek B; Haeba M; Bláha L
    Toxicon; 2014 Mar; 79():11-8. PubMed ID: 24412459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective doses, guidelines & regulations.
    Burch MD
    Adv Exp Med Biol; 2008; 619():831-53. PubMed ID: 18461792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ciliate Nassula sp. grazing on a microcystin-producing cyanobacterium (Planktothrix agardhii): impact on cell growth and in the microcystin fractions.
    Combes A; Dellinger M; Cadel-six S; Amand S; Comte K
    Aquat Toxicol; 2013 Jan; 126():435-41. PubMed ID: 23010390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of diuron and carbofuran pesticides in their pure and commercial forms on Paramecium caudatum: The use of protozoan in ecotoxicology.
    Mansano AS; Moreira RA; Pierozzi M; Oliveira TMA; Vieira EM; Rocha O; Regali-Seleghim MH
    Environ Pollut; 2016 Jun; 213():160-172. PubMed ID: 26890484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Health-based cyanotoxin guideline values allow for cyanotoxin-based monitoring and efficient public health response to cyanobacterial blooms.
    Farrer D; Counter M; Hillwig R; Cude C
    Toxins (Basel); 2015 Feb; 7(2):457-77. PubMed ID: 25664510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of secondary metabolites produced by different cyanobacterial populations on the freshwater zooplankters Brachionus calyciflorus and Daphnia pulex.
    Pawlik-Skowrońska B; Toporowska M; Mazur-Marzec H
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):11793-11804. PubMed ID: 30815809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings.
    Svirčev Z; Lalić D; Bojadžija Savić G; Tokodi N; Drobac Backović D; Chen L; Meriluoto J; Codd GA
    Arch Toxicol; 2019 Sep; 93(9):2429-2481. PubMed ID: 31350576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detected cyanotoxins by UHPLC MS/MS technique in tropical reservoirs of northeastern Colombia.
    León C; Peñuela GA
    Toxicon; 2019 Sep; 167():38-48. PubMed ID: 31185239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyanobacterial peptides beyond microcystins - A review on co-occurrence, toxicity, and challenges for risk assessment.
    Janssen EM
    Water Res; 2019 Mar; 151():488-499. PubMed ID: 30641464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Summer changes in cyanobacterial bloom composition and microcystin concentration in eutrophic Czech reservoirs.
    Znachor P; Jurczak T; Komárková J; Jezberová J; Mankiewicz J; Kastovská K; Zapomelová E
    Environ Toxicol; 2006 Jun; 21(3):236-43. PubMed ID: 16646018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyanobacterial toxins: a qualitative meta-analysis of concentrations, dosage and effects in freshwater, estuarine and marine biota.
    Ibelings BW; Havens KE
    Adv Exp Med Biol; 2008; 619():675-732. PubMed ID: 18461789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Risk Levels of Toxic Cyanobacteria in Portuguese Recreational Freshwaters.
    Menezes C; Churro C; Dias E
    Toxins (Basel); 2017 Oct; 9(10):. PubMed ID: 29057822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is qPCR a Reliable Indicator of Cyanotoxin Risk in Freshwater?
    Pacheco AB; Guedes IA; Azevedo SM
    Toxins (Basel); 2016 Jun; 8(6):. PubMed ID: 27338471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A peptidomic approach for monitoring and characterising peptide cyanotoxins produced in Italian lakes by matrix-assisted laser desorption/ionisation and quadrupole time-of-flight mass spectrometry.
    Ferranti P; Nasi A; Bruno M; Basile A; Serpe L; Gallo P
    Rapid Commun Mass Spectrom; 2011 May; 25(9):1173-83. PubMed ID: 21488115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lethal and sublethal effects towards zebrafish larvae of microcystins and other cyanopeptides produced by cyanobacteria.
    Torres MA; Jones MR; Vom Berg C; Pinto E; Janssen EM
    Aquat Toxicol; 2023 Oct; 263():106689. PubMed ID: 37713741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: between simplistic scenarios and complex dynamics.
    Reichwaldt ES; Ghadouani A
    Water Res; 2012 Apr; 46(5):1372-93. PubMed ID: 22169160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New microginins from cyanobacteria of Greek freshwaters.
    Zervou SK; Gkelis S; Kaloudis T; Hiskia A; Mazur-Marzec H
    Chemosphere; 2020 Jun; 248():125961. PubMed ID: 32059332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fragmentation mass spectra dataset of linear cyanopeptides - microginins.
    Zervou SK; Kaloudis T; Hiskia A; Mazur-Marzec H
    Data Brief; 2020 Aug; 31():105825. PubMed ID: 32671141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.